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We study the existence and multiplicity of solutions for elliptic
equations in R

N , driven by a non-local integro-differential operator,
which main prototype is the fractional Laplacian. The model under
consideration, denoted by (Pλ), depends on a real parameter λ

and involves two superlinear nonlinearities, one of which could
be critical or even supercritical. The main theorem of the paper
establishes the existence of three critical values of λ which
divide the real line in different intervals, where (Pλ) admits no
solutions, at least one nontrivial non-negative entire solution and
two nontrivial non-negative entire solutions.
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1. Introduction

In this paper we prove the existence and multiplicity of solutions for non-local integro-differential
equations in R

N , whose prototype is given by

(−�)su + a(x)u = λw(x)|u|q−2u − h(x)|u|r−2u in R
N , (Pλ)

where λ ∈ R, 0 < s < 1, 2s < N and (−�)s is the fractional Laplacian operator. Up to normalization
factors, (−�)su is defined pointwise for x in R

N by
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(−�)su(x) = −1

2

∫
RN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s
dy,

along any rapidly decaying function u of class C∞(RN ), see Lemma 3.5 of [18].
The nonlinear terms in (Pλ) are related to the main elliptic part by the request that

2 < q < min
{

r,2∗}, (1.1)

where 2∗ = 2N/(N − 2s) is the critical Sobolev exponent for H s(RN ). The coefficient a is supposed to be
in L∞

loc(R
N ) and to satisfy for a.a. x ∈ R

N

ν(x) = max
{

a(x),
(
1 + |x|)−2s}

, a(x) � κν(x), (1.2)

for some constant κ ∈ (0,1]. The weight w verifies

w ∈ L℘
(
R

N) ∩ Lσ
loc

(
R

N)
, with ℘ = 2∗/

(
2∗ − q

)
, σ > ℘, (1.3)

while h is a positive weight of class L1
loc(R

N ). Finally, h and w are related by the condition

∫
RN

[
w(x)r

h(x)q

]1/(r−q)

dx = H ∈R
+. (1.4)

The main result of the paper is

Theorem 1.1. Under the above assumptions there exist λ∗ , λ∗∗ and λ, with 0 < λ∗ � λ∗∗ � λ such that
Eq. (Pλ) admits

(i) only the trivial solution if λ < λ∗;
(ii) a nontrivial non-negative entire solution if and only if λ� λ∗∗;

(iii) at least two nontrivial non-negative entire solutions if λ > λ.

The definition of entire solution for (Pλ), as well as the proof of Theorem 1.1(i), are given in
Section 2, after the introduction of the main solution space X . Some preliminary results for existence
are presented in Section 3 and in Appendix A. The proof of Theorem 1.1(ii) is discussed in Section 4,
while Theorem 1.1(iii) is proved in Section 5.

For standing wave solutions of fractional Schrödinger equations in R
N we refer to [20,22,32,13,

28], [19, Section 5] and to the references therein. Models governed by unbounded potentials V are
investigated in [14] and in its recent extension [27]. All these papers, however, deal with problems
which are not directly comparable to (Pλ). The present work is more related to the results on general
quasilinear elliptic problems given in [4]. Indeed, in [4], as a corollary of the main theorems, we
proved under (1.4) that there exists λ∗ > 0 such that

−div
(|∇u|p−2∇u

) + a(x)|u|p−2u = λw(x)|u|q−2u − h(x)|u|r−2u in R
N ,

1 < p < N, max{2, p} < q < min
{

r, p∗}, p∗ = Np

N − p
, (Eλ)

admits at least a nontrivial non-negative entire solution if and only if λ� λ∗ . Theorem 1.1(ii) extends
Theorem A of [4] to non-local integro-differential equations. It would be interesting to understand if
λ∗ = λ∗∗ in Theorem 1.1. This possible gap does not rise in [4]. Indeed, if u is a solution of (Eλ) also
|u| is. The situation is more delicate for (Pλ), since the fractional Laplacian itself does not guarantee
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the same property. Hence, it remains an open problem to establish whether λ∗ = λ∗∗ in the non-local
setting.

The extension of Theorem A of [4] to (Pλ) is not trivial and requires to overcome several diffi-
culties which arise in the new context. In particular, the proof of the main preliminary Theorem 4.2
needs a special care.

Furthermore, Theorem 1.1(iii) is a complete extension of Theorem B of [4] to the non-local equation
(Pλ) and its proof is based on a new strategy.

For previous related results in the local setting and in bounded domains we refer to [3,2,15,23]
for the semilinear case and to [16] for the quasilinear case. We also refer to [24] for the semilinear
case in R

N . Actually, for semilinear elliptic equations assumption (1.4) first appears in the existence
Theorem 1.1 of [2] for Dirichlet problems in bounded domains Ω , see also [26] for quasilinear equa-
tions in R

N . In the existence Theorem 1.2 of [2] Alama and Tarantello use the weaker assumption that
w(w/h)(q−2)/(r−q) is in LN/2(Ω). It is still an open problem to produce nontrivial solutions of (Pλ)

when w(w/h)(q−2)/(r−q) ∈ LN/2s(RN ) replaces (1.4) and of (Eλ) when w(w/h)(q−p)/(r−q) ∈ LN/p(RN ).
In the last years a great attention has been devoted to the study of fractional and non-local prob-

lems. For example, some of the most recent contributions on the existence of positive solutions for
critical fractional Laplacian elliptic Dirichlet problems in bounded domains are given in [5], where the
effects of lower order perturbations are considered. Comparison and regularity results and a priori
estimates on the solutions of special fractional Laplacian elliptic boundary value problems in bounded
domains are presented in [17], via symmetrization techniques. For the existence, non-existence, mul-
tiplicity and bifurcation of solutions for square root Laplacian Dirichlet problems in bounded domains
with sign-changing weights we refer to [33]. A mountain pass theorem and applications to Dirichlet
problems in bounded domains involving non-local integro-differential operators of fractional Laplacian
type are given in [29]. Existence of positive solutions of concave–convex Dirichlet fractional Laplacian
problems in bounded domains is proved in [8].

However, the interest in non-local integro-differential problems goes beyond the mathematical
curiosity. Indeed, they have impressive applications in different fields, as the thin obstacle problem,
optimization, finance, phase transitions, stratified materials, anomalous diffusion, crystal dislocation,
deblurring and denoising of images, and so on. For further details we refer to [10,11,13,14,18,22,27,
30–32] and the references therein.

Theorem 1.1 continues to hold when (−�)su in (Pλ) is replaced by any non-local integro-
differential operator LK u, defined pointwise by

LK u(x) = −1

2

∫
RN

[
u(x + y) + u(x − y) − 2u(x)

]
K (y)dy,

along any rapidly decaying function u of class C∞(RN ), where the positive weight K : RN \ {0} → R
+

satisfies the main properties

(k1) g K ∈ L1(RN ), where g(x) = min{1, |x|2};
(k2) there exists γ > 0 such that K (x) � γ |x|−(N+2s) for all x ∈ R

N \ {0};
(k3) K (x) = K (−x) for all x ∈ R

N \ {0}.

Few details of the main changes, in passing from (−�)su to LK u in (Pλ), are given in Appendix B.
Of course LK u reduces to the fractional Laplace operator (−�)su when K (x) = |x|−(N+2s) .

2. Preliminaries and non-existence

Let Ds(RN ) denote the completion of C∞
0 (RN ) with respect to the Gagliardo norm

[u]s =
(∫ ∫

2N

|u(x) − u(y)|2
|x − y|N+2s

dx dy

)1/2

.

R
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The embedding Ds(RN ) ↪→ L2∗
(RN ) is continuous, that is

‖u‖2∗ � C2∗ [u]s for all u ∈ Ds(
R

N)
, (2.1)

where C2
2∗ = c(N)

s(1−s)
(N−2s) by Theorem 1 of [25], see also Theorem 1 of [7]. The space E denotes the

completion of C∞
0 (RN ) with respect to the norm

‖u‖E =
(

[u]2
s +

∫
RN

ν(x)|u|2 dx

)1/2

.

Clearly, ‖ · ‖E is a Hilbertian norm induced by the inner product

〈u, v〉E =
∫ ∫
R2N

[u(x) − u(y)] · [v(x) − v(y)]
|x − y|N+2s

dx dy +
∫
RN

ν(x)u(x)v(x)dx

= 〈u, v〉s + 〈u, v〉ν .

Finally, X is the completion of C∞
0 (RN ) with respect to the norm

‖u‖ = (‖u‖2
E + ‖u‖2

r,h

)1/2
, where ‖u‖r

r,h =
∫
RN

h(x)|u|rdx.

From now on B R will denote the ball in R
N of center zero and radius R > 0.

Lemma 2.1. The embeddings X ↪→ E ↪→ Ds(RN ) ↪→ L2∗
(RN ) are continuous, with [u]s � ‖u‖E for all u ∈ E

and ‖u‖E � ‖u‖ for all u ∈ X.
Moreover, for any R > 0 and p ∈ [1,2∗) the embeddings E ↪→↪→ Lp(B R) and X ↪→↪→ Lp(B R) are com-

pact.

Proof. The first two embeddings of the chain X ↪→ E ↪→ Ds(RN ) ↪→ L2∗
(RN ) are obviously con-

tinuous, with [u]s � ‖u‖E for all u ∈ E and ‖u‖E � ‖u‖ for all u ∈ X . The continuity of the third
embedding follows from (2.1), as recalled above.

Fix R > 0. By the first part of the lemma the embedding E ↪→ H s(B R) is continuous, since 0 < k1 �
ν(x) � k2 for a.a. x ∈ B R and for some positive numbers k1 and k2 depending only on R , being a ∈
L∞

loc(R
N ) by (1.2). The embedding Hs(B R) ↪→↪→ Lp(B R) is compact for all p ∈ [1,2∗) by Corollary 7.2

of [18], and so the embeddings E ↪→↪→ Lp(B R) and X ↪→↪→ Lp(B R) are compact. �
From the structural assumptions (1.2)–(1.4) all the coefficients a, w , h in (Pλ) are weights in R

N .
We indicate with L2(RN ,a) = (L2(RN ,a),‖ · ‖2,a), Lq(RN , w) = (Lq(RN , w),‖ · ‖q,w) and Lr(RN ,h) =
(Lr(RN ,h),‖ · ‖r,h) the corresponding weighted Lebesgue spaces, which are uniformly convex Banach
spaces by Proposition A.6 of [4].

Lemma 2.2. The embedding Ds(RN ) ↪→ Lq(RN , w) is continuous, with

‖u‖q,w � Cw [u]s for all u ∈ Ds(
R

N)
, (2.2)

and Cw = C2∗‖w‖1/q
℘ > 0. The embeddings
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E ↪→↪→ Lq(
R

N , w
)

and X ↪→↪→ Lq(
R

N , w
)

are compact. Furthermore, for all u ∈ E

[u]2
s + ‖u‖2

2,a � κ‖u‖2
E , (2.3)

where κ is given in (1.2).

Proof. By (1.3), (2.1) and Hölder’s inequality, for all u ∈ Ds(RN ),

‖u‖q,w �
( ∫
RN

w(x)℘ dx

)1/℘q

·
( ∫
RN

|u|2∗
dx

)1/2∗

� C2∗‖w‖1/q
℘ [u]s,

that is, (2.2) holds.
In order to prove the last part of the lemma it is enough to show that E ↪→↪→ Lq(RN , w), that is,

that ‖un − u‖q,w → 0 as n → ∞ whenever un ⇀ u in E . By Hölder’s inequality,

∫
RN\B R

w(x)|un − u|q dx � M

( ∫
RN\B R

w(x)℘ dx

)1/℘

= o(1)

as R → ∞, being w ∈ L℘(RN ) by (1.3) and M = supn ‖un − u‖q
2∗ < ∞. For all ε > 0 there exists

Rε > 0 so large that supn

∫
RN \B Rε

w(x)|un − u|q dx < ε/2. Moreover, by (1.3), Hölder’s inequality and
Lemma 2.1 as n → ∞∫

B Rε

w(x)|un − u|q dx � ‖w‖Lσ (B Rε )‖un − u‖q

Lσ ′q(B Rε )
= o(1),

since σ ′q < 2∗ . Hence, there exists Nε > 0 such that
∫

B Rε
w(x)|un − u|q dx < ε/2 for all n � Nε . In

conclusion, for all n � Nε

‖un − u‖q
q,w =

∫
RN \B Rε

w(x)|un − u|q dx +
∫

B Rε

w(x)|un − u|q dx < ε,

as required. Now, from (1.2) we directly get (2.3), being κ ∈ (0,1]. �
We say that u ∈ X is a (weak) entire solution of (Pλ) if

〈u,ϕ〉s +
∫
RN

a(x)uϕ dx = λ

∫
RN

w(x)|u|q−2uϕ dx −
∫
RN

h(x)|u|r−2uϕ dx (2.4)

for all ϕ ∈ X .
Hence the entire solutions of (Pλ) correspond to the critical points of the C1 energy functional

Φλ : X → R, defined by

Φλ(u) = 1 [u]2
s + 1‖u‖2

2,a − λ‖u‖q
q,w + 1‖u‖r

r,h,
2 2 q r
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see the next Lemma 3.4. Similarly, non-negative entire solutions of (Pλ) are the critical points of the
C1 functional

Ψλ(u) = 1

2
[u]2

s + 1

2
‖u‖2

2,a − λ

q

∥∥u+∥∥q
q,w + 1

r
‖u‖r

r,h,

well-defined for all u ∈ X , see the next Lemma 3.4. Indeed, both u+ and u− ∈ X for all u ∈ X , being
|u+(x)− u+(y)| � |u(x)− u(y)| and |u−(x)− u−(y)| � |u(x)− u(y)| for all x, y ∈ R

N . Furthermore, for
all u ∈ X

〈
u, u−〉

s =
∫ ∫
R2N

u−(x)2 + u−(y)2 − 2u−(x)u(y)

|x − y|N+2s
dx dy,

since
∫∫

R2N
u(x)u−(y)

|x−y|N+2s dx dy = ∫∫
R2N

u−(x)u(y)

|x−y|N+2s dx dy. Therefore, if u ∈ X is a critical point of Ψλ , then by

(1.2)

0 = 〈
u, u−〉

s +
∫
RN

a(x)
∣∣u−∣∣2

dx +
∫
RN

h(x)
∣∣u−∣∣r

dx

�
∫ ∫
R2N

[u−(x) − u−(y)]2 + 2u−(x)u+(y)

|x − y|N+2s
dx dy + κ

∥∥u−∥∥2
2,ν

� κ
∥∥u−∥∥2

E + 2
∫ ∫
R2N

u−(x)u+(y)

|x − y|N+2s
dx dy � 0,

in other words u− = 0 in E , that is, the critical point u of Ψλ is non-negative in R
N .

Lemma 2.3. If u ∈ X \ {0} and λ ∈R satisfy

[u]2
s + ‖u‖2

2,a + ‖u‖r
r,h = λ‖u‖q

q,w , (2.5)

then λ > 0 and

c1λ
1/(2−q) � ‖u‖q,w � c2λ

r/2(r−q), (2.6)

where

c1 = (
κ/C2

w

)1/(q−2)
and c2 = [

(r − q)C2
w H/rκ

]1/2
.

Proof. Let u ∈ X \ {0} and λ ∈ R satisfy (2.5). Then 0 < κ‖u‖2
E � λ‖u‖q

q,w by (2.3), so that λ > 0 and
moreover

‖u‖2
q,w � C2

w‖u‖2
E � λC2

w

κ
‖u‖q

q,w (2.7)

by (2.2). Using Young’s inequality
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tτ � tα

α
+ τβ

β
,

with t = h(x)q/r |u|q � 0, τ = λw(x)h(x)−q/r � 0, α = r/q > 1 and β = r/(r − q) > 1, we find

λw(x)|u|q � q

r
h(x)|u|r + r − q

r

(
λw(x)

h(x)q/r

)r/(r−q)

.

Integration over R
N gives

λ‖u‖q
q,w � q

r
‖u‖r

r,h + r − q

r
Hλr/(r−q). (2.8)

Thus, by (2.5) we obtain

[u]2
s + ‖u‖2

2,a �
q − r

r
‖u‖r

r,h + r − q

r
Hλr/(r−q) � r − q

r
Hλr/(r−q),

being q < r. Hence, since u �≡ 0 by assumption, the last inequality and (2.7) give (2.6), with c1 and c2
as stated. �

If (Pλ) admits a nontrivial entire solution u ∈ X , then λ � λ0 by (2.6), where λ0 = (c1/

c2)
2(r−q)(q−2)/q(r−2) > 0. Define

λ∗ = sup
{
λ > 0: (Pμ) admits only the trivial solution for all μ < λ

}
.

Theorem 1.1(i) follows directly by the definition of λ∗ . Similarly, put

λ∗
Ψλ

= sup
{
λ > 0: (Pμ) admits no nontrivial non-negative solution for all μ < λ

}
.

Clearly λ∗
Ψλ

� λ∗ � λ0 > 0.

3. Preliminary results for existence

By the results of Section 2 from now on we consider only the case λ > 0.

Lemma 3.1. The functionals Φλ and Ψλ are coercive in X. In particular, any sequence (un)n in X such that
either (Φλ(un))n or (Ψλ(un))n is bounded admits a weakly convergent subsequence in X.

Proof. Let us consider the following elementary inequality: for every k1, k2 > 0 and 0 < α < β

k1|t|α − k2|t|β � Cαβk1

(
k1

k2

)α/(β−α)

for all t ∈R, (3.1)

where Cαβ > 0 is a constant depending only on α and β .
Taking k1 = λw(x)/q, k2 = h(x)/2r, α = q, β = r and t = u(x) in (3.1), for all x ∈R

N we have

λ

q
w(x)

∣∣u(x)
∣∣q − h(x)

2r

∣∣u(x)
∣∣r � Cλr/(r−q)

[
w(x)r

h(x)q

]1/(r−q)

,

where C = Cqr[2r/q]q/(r−q)/q. Integrating the above inequality over R
N , we get by (1.4)
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λ

q
‖u‖q

q,w − 1

2r
‖u‖r

r,h � Cλ,

where Cλ = CHλr/(r−q) > 0.
Therefore, by (2.3) for all u ∈ X

Φλ(u) = 1

2
[u]2

s + 1

2
‖u‖2

2,a −
[

λ

q
‖u‖q

q,w − 1

2r
‖u‖r

r,h

]
− 1

2r
‖u‖r

r,h + 1

r
‖u‖r

r,h

� κ

2
‖u‖2

E + 1

2r
‖u‖r

r,h − Cλ �
κ

2
‖u‖2

E + 1

2r

(‖u‖2
r,h − 1

) − Cλ

� min{κ, r−1}
2

‖u‖2 − Cλ − 1

2r
.

Hence, Φλ is coercive in X . This implies at once that also Ψλ is coercive in X , being Ψλ(u) � Φλ(u)

for all u ∈ X .
The last part of the claim follows at once by the coercivity of Φλ and Ψλ and the reflexivity of the

space X , see Proposition A.1. �
Lemma 3.2. The functional Ψ : X → R, Ψ (u) = 1

2 [u]2
s , is convex and of class C1 . In particular, Ψ is weakly

lower semicontinuous in X.

Proof. The convexity is trivial. Now, let (un)n , u ∈ X be such that un → u in X . Then clearly [un −
u]s → 0 as n → ∞. Consider the following elementary inequality ||t|2 −|τ |2| � 2(|t −τ |2 +|τ | · |t −τ |)
which is valid for all t , τ ∈R. Applying this relation and Hölder’s inequality, we have

∣∣Ψ (un) − Ψ (u)
∣∣ � 1

2

∫ ∫
R2N

||un(x) − un(y)|2 − |u(x) − u(y)|2|
|x − y|N+2s

dx dy

�
∫ ∫
R2N

|un(x) − un(y) − u(x) + u(y)|2
|x − y|N+2s

dx dy

+
∫ ∫
R2N

|u(x) − u(y)| · |un(x) − un(y) − u(x) + u(y)|
|x − y|N+2s

dx dy

� [un − u]2
s + [u]s[un − u]s = o(1)

as n → ∞. This shows the continuity of Ψ .
Moreover, Ψ is Gâteaux-differentiable in X and for all u, ϕ ∈ X

〈
Ψ ′(u),ϕ

〉 = ∫ ∫
R2N

[u(x) − u(y)] · [ϕ(x) − ϕ(y)]
|x − y|N+2s

dx dy = 〈u,ϕ〉s.

Now, let (un)n , u ∈ X be such that un → u in X as n → ∞. Of course

∥∥Ψ ′(un) − Ψ ′(u)
∥∥

X ′ = sup
ϕ∈X

‖ϕ‖=1

∣∣〈un − u,ϕ〉s
∣∣ � [un − u]s � ‖un − u‖,

that is, Ψ is of class C1, as claimed. Finally, Ψ is weakly lower semicontinuous in X by Corollary 3.9
of [9]. �
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For any (x, u) ∈R
N ×R put

f (x, u) = λw(x)|u|q−2u − h(x)|u|r−2u, (3.2)

so that

F (x, u) =
u∫

0

f (x, v)dv = λ

q
w(x)|u|q − h(x)

|u|r
r

. (3.3)

Lemma 3.3. For any fixed u ∈ X the functional Fu : X → R, defined by

Fu(v) =
∫
RN

f
(
x, u(x)

)
v(x)dx,

is in X ′ . In particular, if vn ⇀ v in X then Fu(vn) →Fu(v).

Proof. Take u ∈ X . Clearly Fu is linear. Moreover, using (2.2), we get for all v ∈ X

∣∣Fu(v)
∣∣� λ

∫
RN

w(x)|u|q−1|v|dx +
∫
RN

h(x)|u|r−1|v|dx

� λ‖u‖q−1
q,w ‖v‖q,w + ‖u‖r−1

r,h ‖v‖r,h �
(
λCw‖u‖q−1

q,w + ‖u‖r−1
r,h

)‖v‖,

and so Fu is continuous in X . �
In the next result we strongly use the assumption q > 2. An interesting open question occurs when

1 < q < 2 < r, cf. Theorem 2.1 of [3] for homogeneous Dirichlet problems in bounded domains of RN .

Lemma 3.4. The functionals Φλ and Ψλ are of class C1(X) and Φλ is sequentially weakly lower semicontinu-
ous in X, that is, if un ⇀ u in X, then

Φλ(u) � lim inf
n→∞ Φλ(un). (3.4)

Proof. Lemmas 3.2 and A.3–A.5 imply that Φλ and Ψλ are of class C1(X). Let (un)n , u ∈ X be such
that un ⇀ u in X . The definition of Φλ and (3.2) give

Φλ(u) − Φλ(un) = 1

2

([u]2
s − [un]2

s + ‖u‖2
2,a − ‖un‖2

2,a

)
+

∫
RN

[
F (x, un) − F (x, u)

]
dx. (3.5)

Since un ⇀ u in X , Lemmas 3.2 and A.3 imply that

[u]2
s � lim inf[un]2

s and ‖u‖2
2,a � lim inf‖un‖2

2,a.
n→∞ n→∞
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Hence, by (3.5)

lim sup
n→∞

[
Φλ(u) − Φλ(un)

]
� lim sup

n→∞

∫
RN

[
F (x, un) − F (x, u)

]
dx. (3.6)

By (3.2) and (3.3), for all t ∈ [0,1],

Fu
(
x, u + t(un − u)

) = f
(
x, u + t(un − u)

)

= f (x, u) + (un − u)

t∫
0

fu
(
x, u + τ (un − u)

)
dτ , (3.7)

where clearly

fu(x, z) = λ(q − 1)w(x)|z|q−2 − h(x)(r − 1)|z|r−2.

Multiplying (3.7) by un − u and integrating over [0,1], we obtain

F (x, un) − F (x, u) = f (x, u)(un − u)

+ (un − u)2

1∫
0

( t∫
0

fu
(
x, u + τ (un − u)

)
dτ

)
dt. (3.8)

By (3.1), with t = z, k1 = λw(x)(q − 1), k2 = h(x)(r − 1), α = q − 2 > 0 and β = r − 2 > 0, we get

fu(x, z)� 2C1 w(x)2/q
[

w(x)r/q

h(x)

](q−2)/(r−q)

,

where C1 is a positive constant, depending only on q, r and λ. Consequently, (3.8) yields

∫
RN

[
F (x, un) − F (x, u)

]
dx �

∫
RN

f (x, u)(un − u)dx

+ C1

∫
RN

w(x)2/q(un − u)2
[

w(x)r/q

h(x)

](q−2)/(r−q)

dx

�
∫
RN

f (x, u)(un − u)dx + C1 H (q−2)/q‖un − u‖2
q,w , (3.9)

by Hölder’s inequality and (1.4). Now, Lemma 3.3 gives

lim
n→∞

∫
N

f (x, u)(un − u)dx = 0, (3.10)
R
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and Lemma 2.2 implies

lim
n→∞‖un − u‖q,w = 0. (3.11)

Combining (3.9)–(3.11) with (3.6) we get the claim (3.4). �
4. Existence if λ is large

Define

λ = inf
u∈X‖u‖q,w =1

{
q

2
[u]2

s + q

2
‖u‖2

2,a + q

r
‖u‖r

r,h

}
.

Note that λ > 0. Indeed, for any u ∈ X with ‖u‖q,w = 1, by Hölder’s inequality and (1.4), we have

1 = ‖u‖q
q,w =

∫
RN

w(x)

h(x)q/r
h(x)q/r |u|q dx � H (r−q)/r‖u‖q

r,h.

Consequently, using also (2.3) and Lemma 2.1, we get

q

2
[u]2

s + q

2
‖u‖2

2,a + q

r
‖u‖r

r,h �
κq

2
‖u‖2

E + q

r
H(q−r)/q � κq

2C2
w

+ q

r
H(q−r)/q,

where Cw > 0 is given in (2.2). In other words,

λ� κq

2C2
w

+ q

r
H(q−r)/q > 0.

Lemma 4.1. For all λ > λ there exists a global nontrivial non-negative minimizer e ∈ X of Φλ with negative
energy, that is Φλ(e) < 0. Furthermore, e is also a critical point of Ψλ and Ψλ(e) = Φλ(e) < 0.

Proof. For all λ > 0 the functional Φλ is sequentially weakly lower semicontinuous, bounded below
and coercive in the reflexive Banach space X by Lemmas 3.1, 3.4 and Proposition A.1. Hence, Theo-
rem 6.1.1 of [6] implies that for all λ > 0 there exists a global minimizer e ∈ X of Φλ , that is

Φλ(e) = inf
v∈X

Φλ(v).

Clearly e is a solution of (Pλ). We prove that e �≡ 0 whenever λ > λ, showing that infv∈X Φλ(v) < 0.
Let λ > λ. Then there exists a function ϕ ∈ X , with ‖ϕ‖q,w = 1, such that

λ‖ϕ‖q
q,w = λ >

q

2

([ϕ]2
s + ‖ϕ‖2

2,a

) + q

r
‖ϕ‖r

r,h.

This can be rewritten as

Φλ(ϕ) = 1

2

([ϕ]2
s + ‖ϕ‖2

2,a

) − λ

q
‖ϕ‖q

q,w + 1

r
‖ϕ‖r

r,h < 0

and consequently Φλ(e) = infv∈X Φλ(v) � Φλ(ϕ) < 0.
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Hence, for any λ > λ Eq. (Pλ) has a nontrivial entire solution e ∈ X such that Φλ(e) < 0. Finally,
we may assume e � 0 in R

N . Indeed, |e| ∈ X and Φλ(|e|) � Φλ(e), being [|u|]s � [u]s . This gives
Φλ(e) = Φλ(|e|), due to the minimality of e.

The second part of the lemma is almost trivial, being Φλ(u) = Ψλ(u) for all u ∈ X , with u � 0
in R

N , so that e is also a nontrivial global minimizer of Ψλ in X . �
Define

λ∗∗ = inf
{
λ > 0: (Pλ) admits a nontrivial non-negative entire solution

}
.

Lemma 4.1 assures that this definition is meaningful and that λ� λ∗∗ .

Theorem 4.2. For any λ > λ∗∗ Eq. (Pλ) admits a nontrivial non-negative entire solution uλ ∈ X.

Proof. Fix λ > λ∗∗ . By definition of λ∗∗ there exists μ ∈ (λ∗∗, λ) such that Φμ has a nontrivial critical
point uμ ∈ X , with uμ � 0 in R

N . Of course, uμ is a subsolution for (Pλ). Consider the following
minimization problem

inf
v∈MΦλ(v), M = {v ∈ X: v � uμ}.

First note that M is closed and convex, and in turn also weakly closed. Moreover, as shown in the
proof of Lemma 4.1, Theorem 6.1.1 of [6] can be applied in X and so in the weakly closed set M.
Hence, Φλ attains its infimum in M, i.e. there exists uλ � uμ such that Φλ(uλ) = infv∈M Φλ(v).

We claim that uλ is a solution of (Pλ), which is clearly non-negative. Indeed, take ϕ ∈ C∞
0 (RN )

and ε > 0. Put

ϕε = max{0, uμ − uλ − εϕ}� 0 and vε = uλ + εϕ + ϕε,

so that vε ∈M. Of course

0 �
〈
Φ ′

λ(uλ), vε − uλ

〉 = ε
〈
Φ ′

λ(uλ),ϕ
〉 + 〈

Φ ′
λ(uλ),ϕε

〉
,

and in turn

〈
Φ ′

λ(uλ),ϕ
〉
� −1

ε

〈
Φ ′

λ(uλ),ϕε

〉
. (4.1)

Since uμ is a subsolution of (Pλ) and ϕε � 0 we get that 〈Φ ′
λ(uμ),ϕε〉 � 0. In particular,

〈
Φ ′

λ(uλ),ϕε

〉 = 〈
Φ ′

λ(uμ),ϕε

〉 + 〈
Φ ′

λ(uλ) − Φ ′
λ(uμ),ϕε

〉
�

〈
Φ ′

λ(uλ) − Φ ′
λ(uμ),ϕε

〉
.

Define Ωε = {x ∈ R
N : uλ(x) + εϕ(x) � uμ(x) < uλ(x)}. Clearly Ωε is a subset of suppϕ . Put u =

uλ − uμ and

Uε(x, y) = [u(x) − u(y)] · [ϕε(x) − ϕε(y)]
|x − y|N+2s

,

so that
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〈u,ϕε〉s =
∫ ∫

Ωε×Ωε

Uε(x, y)dx dy +
∫ ∫

Ωε×(RN \Ωε)

Uε(x, y)dx dy +
∫ ∫

(RN\Ωε)×Ωε

Uε(x, y)dx dy

=
∫ ∫

Ωε×Ωε

Uε(x, y)dx dy + 2
∫ ∫

Ωε×(RN \Ωε)

Uε(x, y)dx dy

� −ε

( ∫ ∫
Ωε×Ωε

U (x, y)dx dy + 2
∫ ∫

Ωε×(RN\Ωε)

U (x, y)dx dy

)

� 2ε

∫ ∫
Ωε×RN

∣∣U (x, y)
∣∣dx dy,

where similarly U (x, y) = [u(x)−u(y)]·[ϕ(x)−ϕ(y)]
|x−y|N+2s . Using the notation of (3.2), we get

∣∣∣∣
∫
Ωε

(
f (x, uλ) − f (x, uμ)

)(−u(x) − εϕ(x)
)

dx

∣∣∣∣ � ε

∫
Ωε

∣∣ f (x, uλ) − f (x, uμ)
∣∣ · ∣∣ϕ(x)

∣∣dx,

since 0 � −u − εϕ = uμ − uλ + ε|ϕ| < ε|ϕ| in Ωε . Therefore,

〈
Φ ′

λ(uλ),ϕε

〉
� ε

(
2

∫ ∫
Ωε×RN

∣∣U (x, y)
∣∣dx dy +

∫
Ωε

a(x)u(x)
∣∣ϕ(x)

∣∣dx

+
∫
Ωε

∣∣ f (x, uλ) − f (x, uμ)
∣∣ · ∣∣ϕ(x)

∣∣dx

)
.

Hence,

〈
Φ ′

λ(uλ),ϕε

〉
� ε

( ∫
Ωε

ψ(x)dx + 2
∫ ∫

Ωε×RN

∣∣U (x, y)
∣∣dx dy

)
, (4.2)

where ψ(x) = {a(uλ − uμ) + | f (x, uλ) − f (x, uμ)|}|ϕ|. We claim that ψ is in L1(suppϕ). Indeed, auλ ,
auμ and also | f (x, uλ) − f (x, uμ)| are in L1

loc(R
N ), being

∣∣ f (x, uλ) − f (x, uμ)
∣∣ � λw(x)

(
uq−1

λ + uq−1
μ

) + h(x)
(
ur−1

λ + ur−1
μ

)
.

In fact, a ∈ LN/2s(suppϕ), since a ∈ L∞
loc(R

N ) by (1.2), so that by Hölder’s inequality

∫
supp ϕ

a(x)uλ dx � |suppϕ|1/2∗
( ∫

supp ϕ

a(x)N/2s dx

)2s/N

‖uλ‖2∗ = C1 (4.3)

and C1 = C1(suppϕ). Similarly, by Hölder’s inequality and (1.3), we obtain

∫
supp ϕ

w(x)uq−1
λ dx � |suppϕ|1/2∗‖w‖℘‖uλ‖q−1

2∗ = C2, (4.4)
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and C2 = C2(suppϕ). Finally, since h ∈ L1
loc(R

N ) and uλ ∈ Lr(RN ,h), then

∫
supp ϕ

h(x)ur−1
λ dx �

( ∫
supp ϕ

h(x)dx

)1/r

‖uλ‖r−1
r,h = C3, (4.5)

with C3 = C3(suppϕ). The estimates (4.3)–(4.5) hold also for uμ . The claim is so proved.
We next show that

lim
ε→0+

( ∫
Ωε

ψ(x)dx + 2
∫ ∫

Ωε×RN

∣∣U (x, y)
∣∣dx dy

)
= 0. (4.6)

Indeed,
∫
Ωε

ψ(x)dx = o(1), since |Ωε| → 0 as ε → 0+ , Ωε ⊂ suppϕ and ψ ∈ L1(suppϕ). Similarly,

X ↪→ Ds(RN ) by Lemma 2.1, so that

U (x, y) = [uλ(x) − uμ(x) − uλ(y) + uμ(y)] · [ϕ(x) − ϕ(y)]
|x − y|N+2s

∈ L1(
R

2N)
.

Thus for all η > 0 there exists Rη so large that

∫ ∫
(supp ϕ)×(RN\B Rη )

∣∣U (x, y)
∣∣dx dy < η/2.

Since |Ωε × B Rη | → 0 as ε → 0+ and U ∈ L1(R2N ) then there exist δη > 0 and εη > 0 such that for
all ε ∈ (0, εη]

|Ωε × B Rη | < δη and
∫ ∫

Ωε×B Rη

∣∣U (x, y)
∣∣dx dy < η/2.

Therefore, for all ε ∈ (0, εη]
∫ ∫

Ωε×RN

∣∣U (x, y)
∣∣dx dy < η,

being Ωε ⊂ suppϕ . Hence (4.6) holds.
In conclusion, by (4.1), (4.2) and (4.6) it follows that 〈Φ ′

λ(uλ),ϕ〉 � o(1) as ε → 0+ . Therefore,

〈Φ ′
λ(uλ),ϕ〉 � 0 for all ϕ ∈ C∞

0 (RN ), that is 〈Φ ′
λ(uλ),ϕ〉 = 0 for all ϕ ∈ C∞

0 (RN ). Since X = C∞
0 (RN )‖·‖ ,

we obtain that uλ is a nontrivial non-negative solution of (Pλ). �
Theorem 4.3. (Pλ∗∗ ) admits a nontrivial non-negative entire solution in X.

Proof. Let (λn)n be a strictly decreasing sequence converging to λ∗∗ and un ∈ X be a nontrivial non-
negative entire solution of (Pλn ). By (2.4) we get for all ϕ ∈ X

〈un,ϕ〉s =
∫

N

gnϕ dx, (4.7)
R
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where n �→ gn(x) = −a(x)un + λn w(x)|un|q−2un − h(x)|un|r−2un . By (2.3)–(2.6) and the monotonicity
of (λn)n , we obtain

κ‖un‖2
E + ‖un‖r

r,h � λn‖un‖q
q,w � cq

2λ
1+rq/2(r−q)

1 .

Therefore (‖un‖E)n and (‖un‖r,h)n are bounded, and in turn also (‖un‖)n is bounded. By Lemma 2.2,
Propositions A.1, A.2 and the fact that Lq(RN , w) and Lr(RN ,h) are uniformly convex Banach spaces
by Proposition A.6 of [4], it is possible to extract a subsequence, still relabeled (un)n , satisfying

un ⇀ u in X; un → u in Lq
(
R

N , w
);

un ⇀ u in Lr
(
R

N ,h
); un → u a.e. in R

N ,
(4.8)

for some u ∈ X . Of course u � 0 a.e. in R
N and we claim that u is the solution we are looking for.

To this aim, first note that for all ϕ ∈ X

〈un,ϕ〉s → 〈u,ϕ〉s,

∫
RN

w(x)|un|q−2unϕ dx →
∫
RN

w(x)|u|q−2uϕ dx, (4.9)

as n → ∞, since un ⇀ u in X and un → u in Lq(RN , w). Furthermore, Lemmas A.3 and A.5 yield in
particular the validity of (A.1) and (A.2) for all ϕ ∈ X . In conclusion, passing to the limit in (4.7) as
n → ∞, we get

〈u,ϕ〉s = −
∫
RN

a(x)uϕ dx + λ∗∗
∫
RN

w(x)|u|q−2uϕ dx −
∫
RN

h(x)|u|r−2uϕ dx

for all ϕ ∈ X , that is, u is a non-negative entire solution of (Pλ∗∗ ).
We finally claim that u �≡ 0. Indeed, ‖u‖q,w = limn→∞ ‖un‖q,w , since un → u in Lq(RN , w) by (4.8).

Moreover, (2.6) applied to each un �= 0 implies that ‖un‖q,w � c1λ
1/(2−q)
n , that is

‖u‖q,w = lim
n→∞‖un‖q,w � c1

(
λ∗∗)1/(2−q)

> 0,

since λn ↘ λ∗∗ and λ∗∗ > 0. Hence u �≡ 0. �
Theorems 4.2 and 4.3 guarantee that λ∗∗ = λ∗

Ψλ
. In particular, for all λ � λ∗∗ the nontrivial non-

negative entire solution u ∈ X constructed in Theorems 4.2 and 4.3 is a nontrivial critical point also
of Ψλ .

Proof of Theorem 1.1(ii). The existence of λ∗∗ follows from Lemma 4.1 and clearly 0 < λ∗ � λ∗∗ . Now,
if (Pλ) admits a nontrivial non-negative entire solution, then necessarily λ� λ∗∗ by definition of λ∗∗ .
On the other hand, Theorems 4.2 and 4.3 assure that (Pλ) admits a nontrivial non-negative entire
solution for all λ � λ∗∗ . �
5. Existence of a second nontrivial non-negative entire solution

In this section we prove Theorem 1.1(iii). In particular, we show that if λ > λ Eq. (Pλ) admits
the nontrivial non-negative global minimizer e, constructed in Lemma 4.1, and a second independent
nontrivial non-negative entire solution u �= e, via variational methods. We start by recalling a modifi-
cation of the mountain pass theorem of Ambrosetti and Rabinowitz, established in [4], which involves
two general Banach spaces X and E .
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Theorem 5.1. (See Theorem A.3 of [4].) Let (X,‖ · ‖) and (E,‖ · ‖E) be two Banach spaces such that X ↪→ E.
Let Φ : X → R be a C1 functional with Φ(0) = 0. Suppose that there exist �, α > 0 and e ∈ X such that
‖e‖E > �, Φ(e) < α and Φ(u) � α for all u ∈ X with ‖u‖E = �.

Then there exists a sequence (un)n in X such that for all n

c � Φ(un) � c + 1

n2
and

∥∥Φ ′(un)
∥∥

X ′ �
2

n
,

where

c = inf
γ ∈Γ

max
t∈[0,1]Φ

(
γ (t)

)
and Γ = {

γ ∈ C
([0,1]; X

)
: γ (0) = 0, γ (1) = e

}
.

The proof of Theorem 5.1 is based on the Ekeland variational principle, see for instance [21]. For a
similar generalization of the mountain pass theorem, obtained with a different proof and the use of
the Palais–Smale compactness condition, we refer to Theorem 2.5 of [12].

We now show that for all λ > 0 the energy functional Ψλ satisfies the geometrical structure of
Theorem 5.1.

Lemma 5.2. For any e ∈ X \ {0} and λ > 0 there exist � ∈ (0,‖e‖E) and α = α(�) > 0 such that Ψλ(u) � α
for all u ∈ X, with ‖u‖E = �.

Proof. Let u be in X . By (2.2) and (2.3)

Ψλ(u) � κ

2
‖u‖2

E − λ

q

∥∥u+∥∥q
q,w � κ

2
‖u‖2

E − λ

q
‖u‖q

q,w �
(

κ

2
− λ

q
C

q
w‖u‖q−2

E

)
‖u‖2

E .

Therefore, it is enough to take 0 < � < min{(κq/λ2Cq
w)1/(q−2),‖e‖E }, so that α = (κ/2 − λC

q
w�q−2/

q)�2 > 0 satisfies the assertion. �
Proof of Theorem 1.1(iii). Lemma 4.1 shows that for all λ > λ there exists a nontrivial non-negative
entire solution e ∈ X of (Pλ), which is a global minimizer for Φλ in X . Hence e is also a global
minimizer for Ψλ in X and Ψλ(e) = Φλ(e) < 0.

Our aim now is to apply Theorem 5.1 to the functional Ψλ in order to find a second nontrivial
non-negative entire solution of (Pλ), when λ > λ.

We recall that Ψλ is of class C1 by Lemmas 3.2 and A.3–A.5. Moreover, by Lemma 5.2 and Theo-
rem 5.1 for all λ > λ there exists a sequence (un)n in X such that

Ψλ(un) → c and
∥∥Ψ ′

λ(un)
∥∥

X ′ → 0

as n → ∞, where

c = inf
γ ∈Γ

max
t∈[0,1]Ψλ

(
γ (t)

)
and Γ = {

γ ∈ C
([0,1]; X

)
: γ (0) = 0, γ (1) = e

}
.

By Lemma 3.1 the sequence (un)n is bounded in X . From now on we can follow the argument of
the proof of Theorem 4.3. We report here the main differences. By Lemmas 2.1, 2.2, Propositions A.1,
A.2 and Propositions A.6, A.7 of [4] it is again possible to extract a subsequence, still relabeled (un)n ,
satisfying (4.8). Moreover, from (4.8) it follows also that u+

n → u+ in Lq(RN , w) being ‖u+
n −u+‖q,w �

‖un − u‖q,w . We shall next prove that u is a nontrivial non-negative entire solution of (Pλ), with
u �= e.
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Clearly, for any ϕ ∈ X

〈
Ψ ′

λ(un),ϕ
〉 = 〈un,ϕ〉s −

∫
RN

gnϕ dx, (5.1)

where here n �→ gn(x) = −a(x)un + λw(x)|u+
n |q−2u+

n − h(x)|un|r−2un . Now,

〈un,ϕ〉s → 〈u,ϕ〉s,

∫
RN

w(x)
∣∣u+

n

∣∣q−2
u+

n ϕ dx →
∫
RN

w(x)
∣∣u+∣∣q−2

u+ϕ dx

as n → ∞, since un ⇀ u in X and u+
n → u+ in Lq(RN , w).

Moreover, Lemmas A.3 and A.5 give (A.1) and (A.2) for all ϕ ∈ X . Hence, passing to the limit as
n → ∞ in (5.1), we have

〈u,ϕ〉s +
∫
RN

a(x)uϕ dx = λ

∫
RN

w(x)
∣∣u+∣∣q−2

u+ϕ dx −
∫
RN

h(x)|u|r−2uϕ dx

for all ϕ ∈ X , since 〈Ψ ′
λ(un),ϕ〉 → 0 as n → ∞ for all ϕ ∈ X . In conclusion, u is a critical point for Ψλ

and so u is a non-negative entire solution of (Pλ). We claim that

‖un − u‖ → 0 as n → ∞. (5.2)

First,

Jw(n) =
∫
RN

w(x)
(∣∣u+

n

∣∣q−2
u+

n − ∣∣u+∣∣q−2
u+)

(un − u)dx → 0 (5.3)

as n → ∞. Indeed, un → u in Lq(RN , w) as stated in (4.8). Consequently, u+
n → u+ in Lq(RN , w)

and so also |u+
n |q−2u+

n → |u+|q−2u+ in Lq′
(RN , w) by Proposition A.8(ii) of [4]. Applying Hölder’s

inequality, we get

∣∣Jw(n)
∣∣ � ∥∥∣∣u+

n

∣∣q−2
u+

n − ∣∣u+∣∣q−2
u+∥∥

q′,w‖un − u‖q,w → 0,

as n → ∞. This completes the proof of (5.3).
Put Rn = I1(n) + I2(n) + I3(n), where

I1(n) = [un − u]2
s � 0, I2(n) = ‖un − u‖2

2,a � 0,

I3(n) =
∫
RN

h(x)
(|un|r−2un − |u|r−2u

)
(un − u)dx � 0.

Clearly 〈Ψ ′
λ(un) − Ψ ′

λ(u), un − u〉 → 0 as n → ∞, since un ⇀ u in X and Ψ ′
λ(un) → 0 in X ′ as n → ∞.

Hence, by (5.3)

Rn = 〈
Ψ ′

λ(un) − Ψ ′
λ(u), un − u

〉 + λJw(n) = o(1)

as n → ∞, so that
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‖un − u‖2
E � I1(n) + 1

κ
I2(n) = o(1) (5.4)

as n → ∞ by (1.2), and also as n → ∞

‖un − u‖r
r,h � krI3(n) = o(1), (5.5)

thanks to Simon’s inequality |ξ − ξ0|r � kr(|ξ |r−2ξ − |ξ0|r−2ξ0) · (ξ − ξ0) valid for all ξ , ξ0 ∈ R, being
r > 2. Clearly (5.4) and (5.5) imply the claim (5.2).

Since un → u in X and Ψλ ∈ C1(X), we have Ψλ(u) = c = limn→∞ Ψλ(un). Therefore, u is a sec-
ond independent nontrivial non-negative entire solution of (Pλ), with Ψλ(u) = c > 0 > Ψλ(e). This
concludes the proof. �
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Appendix A

In the following proposition we show that the Banach space X defined in the Introduction is re-
flexive. We insert this result for completeness of the presentation, even if it could be fairly foreseeable.

Proposition A.1. The Banach space (X,‖ · ‖) is reflexive.

Proof. We follow essentially the proof of Proposition A.11 of [4]. The product space Y = E × Lr(RN ,h),
endowed with the norm ‖u‖Y = ‖u‖E + ‖u‖r,h , is a reflexive Banach space by Theorem 1.22(ii) of [1],
since E is a Hilbert space and Lr(RN ,h) is a uniformly convex Banach space by Proposition A.6 of [4].

The operator T : (X,‖ · ‖Y ) → (Y ,‖ · ‖Y ), T (u) = (u, u), is well defined, linear and isometric. There-
fore, T (X) is a closed subspace of the reflexive space Y , and so T (X) is reflexive by Theorem 1.21(ii)
of [1]. Consequently, (X,‖ · ‖Y ) is reflexive, being isomorphic to a reflexive Banach space. Finally, we
conclude that also (X,‖ · ‖) is reflexive, because reflexivity is preserved under equivalent norms. �

We present the next result for the main solution space X , even if it continues to hold also for the
larger space E .

Proposition A.2. Let (un)n, u ∈ X be such that un ⇀ u in X. Then, up to a subsequence, un → u a.e. in R
N .

Proof. Let (un)n and u be as in the statement. Then, un → u as n → ∞ in Lp(B R) for all R > 0 and
p ∈ [1,2∗) by Lemma 2.1. In particular, in correspondence to R = 1 we find a subsequence (u1,n)n

of (un)n such that u1,n → u a.e. in B1. Clearly u1,n ⇀ u in X and so, in correspondence to R = 2,
there exists a subsequence (u2,n)n of (u1,n)n such that u2,n → u a.e. in B2, and so on. The diagonal
subsequence (un,n)n of (un)n , constructed by induction, converges to u a.e. in R

N as n → ∞. �
The next three lemmas provide regularity properties for the main functionals involved in Φλ

and Ψλ , defined in Section 2.

Lemma A.3. The functional Φa : X → R, Φa(u) = 1
2 ‖u‖2

2,a, is convex, of class C1 and weakly lower semicon-

tinuous in X. Moreover, if (un)n, u ∈ X and un ⇀ u in X, then Φ ′
a(un)

∗
⇀ Φ ′

a(u) in X ′ .
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Proof. The convexity of Φa is obvious. The embeddings X ↪→ E ↪→ L2(RN , ν) ↪→ L2(RN ,a) are con-
tinuous by (1.2), with ‖u‖2,a � ‖u‖ for all u ∈ X . Hence the functional Φa is continuous in X .
Consequently, Φa is weakly lower semicontinuous by Corollary 3.9 of [9].

Moreover, Φa is Gâteaux-differentiable in X and for all u, ϕ ∈ X we have

〈
Φ ′

a(u),ϕ
〉 = ∫

RN

a(x)uϕ dx.

Now, let (un)n , u ∈ X be such that un ⇀ u in X as n → ∞. The embedding X ↪→ L2(RN ,a) implies
that un ⇀ u in L2(RN ,a). Thus, for all ϕ ∈ X

∫
RN

a(x)unϕ dx →
∫
RN

a(x)uϕ dx (A.1)

as n → ∞, that is 〈Φ ′
a(un),ϕ〉 → 〈Φ ′

a(u),ϕ〉, and so Φ ′
a(un)

∗
⇀ Φ ′

a(u) in X ′ , as claimed.
Let us prove that Φa ∈ C1(X). Fix (un)n , u ∈ X , with un → u in X . Hence un → u in L2(RN ,a).

Therefore, for all ϕ ∈ X , with ‖ϕ‖ = 1,

∣∣〈Φ ′
a(un) − Φ ′

a(u),ϕ
〉∣∣ � ‖un − u‖2,a‖ϕ‖2,a � ‖un − u‖2,a,

since ‖ϕ‖2,a � ‖ϕ‖2,ν � ‖ϕ‖ for all ϕ ∈ X by (1.2). Therefore,

∥∥Φ ′
a(un) − Φ ′

a(u)
∥∥

X ′ � ‖un − u‖2,a → 0

as n → ∞. In conclusion, Φa is of class C1(X). �
Lemma A.4. The functional Φw : X → R, Φw(u) = 1

q ‖u‖q
q,w , is convex, of class C1 and weakly continuous

in X. Moreover, if (un)n, u ∈ X and un ⇀ u in X, then Φ ′
w(un) → Φ ′

w(u) in X ′ .
Finally, the same properties hold for the functional Φ+

w (u) = 1
q ‖u+‖q

q,w .

Proof. First note that Φw is convex since q > 2. Moreover, by Lemma 2.2 and Theorem 3.10 of [9], we
also have that Φw is weakly continuous, so that in particular Φw is continuous in X . Furthermore,
Φw is Gâteaux-differentiable in X and for all u, ϕ ∈ X

〈
Φ ′

w(u),ϕ
〉 = ∫

RN

w(x)|u|q−2uϕ dx.

Now, let (un)n , u ∈ X be such that un ⇀ u in X and fix ϕ ∈ X , with ‖ϕ‖ = 1. By Lemma 2.2 and
Proposition A.8(ii) of [4], it follows that vn = |un|q−2un → v = |u|q−2u in Lq′

(RN , w). Therefore,

∣∣〈Φ ′
w(un) − Φ ′

w(u),ϕ
〉∣∣ � ‖vn − v‖q′,w‖ϕ‖q,w � Cw‖vn − v‖q′,w

by (2.2). Hence,

∥∥Φ ′
w(un) − Φ ′

w(u)
∥∥

X ′ � Cw‖vn − v‖q′,w ,

that is Φ ′
w(un) → Φ ′

w(u) in X ′ . In particular, this shows that Φw is of class C1(X) and completes the
proof of the first part of the lemma.
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The last part is a direct consequence of the fact that if un ⇀ u in X , then un → u in Lq(RN , w),
and so u+

n → u+ in Lq(RN , w), being |u+
n − u+| � |un − u| a.e. in R

N . �
Lemmas A.3 and A.4 continue to hold when X is replaced by E . Indeed, E ↪→ L2(RN ,a) by (1.2)

and E ↪→↪→ Lq(RN , w) by Lemma 2.2, so that all the functionals are well defined in E .

Lemma A.5. The functional Φh : X → R, Φh(u) = 1
r ‖u‖r

r,h is convex, of class C1 and weakly lower semicon-

tinuous in X. Moreover, if (un)n, u ∈ X and un ⇀ u in X as n → ∞, then Φ ′
h(un)

∗
⇀ Φ ′

h(u) in X ′ .

Proof. The convexity of Φh is obvious, being r > 2, while the continuity follows from the continuity
of the embedding X ↪→ Lr(RN ,h). Hence Φh is weakly lower semicontinuous in X by Corollary 3.9
of [9].

On the other hand, Φh is Gâteaux-differentiable in X and for all u, ϕ ∈ X

〈
Φ ′

h(u),ϕ
〉 = ∫

RN

h(x)|u|r−2uϕ dx.

Let (un)n , u ∈ X be such that un → u in X . Then, un → u in Lr(RN ,h), and so vn = |un|r−2un → v =
|u|r−2u in Lr′

(RN ,h) by Proposition A.8(ii) of [4]. Therefore,

∥∥Φ ′
h(un) − Φ ′

h(u)
∥∥

X ′ � sup
ϕ∈X

‖ϕ‖=1

‖vn − v‖r′,h · ‖ϕ‖r,h � ‖vn − v‖r′,h = o(1)

as n → ∞. This gives the C1 regularity of Φh .
Suppose now that un ⇀ u in X . Fix a subsequence (vnk )k of the sequence n �→ vn = |un|r−2un .

Of course unk ⇀ u in X and by Proposition A.2 there exists a further subsequence (unk j
) j such that

unk j
→ u a.e. in R

N . Thus vnk j
→ v = |u|r−2u a.e. in R

N . On the other hand, (vnk j
) j is bounded in

Lr′
(RN ,h), since ‖vnk j

‖r′
r′,h = ‖unk j

‖r
r,h and (unk j

) j is bounded in Lr(RN ,h). Consequently, vnk j
⇀ v

in Lr′
(RN ,h) by Proposition A.8(i) of [4]. In conclusion, due to the arbitrariness of (vnk )k , the entire

sequence vn ⇀ v in Lr′
(RN ,h) as n → ∞. In particular for all ϕ ∈ X∫

RN

h(x)|un|r−2unϕ dx →
∫
RN

h(x)|u|r−2uϕ dx (A.2)

as n → ∞. This gives the claim and completes the proof. �
Appendix B

In this section we present the few changes we need to prove Theorem 1.1, when LK u replaces
(−�)su in (Pλ) and K : RN \ {0} → R

+ satisfies the main properties (k1)–(k3) of the Introduction.
By (k1) for all ϕ ∈ C∞

0 (RN ) the function

(x, y) �→ [
u(x) − u(y)

] · √K (x − y) ∈ L2(
R

2N)
.

Let us denote by Ds
K (RN ) the completion of C∞

0 (RN ) with respect to the Hilbertian norm

[u]s,K =
(∫ ∫

2N

∣∣u(x) − u(y)
∣∣2

K (x − y)dx dy

)1/2

,

R
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induced by the inner product

〈u, v〉s,K =
∫ ∫
R2N

[
u(x) − u(y)

] · [v(x) − v(y)
] · K (x − y)dx dy.

Clearly the embedding Ds
K (RN ) ↪→ Ds(RN ) is continuous, being

[u]s � γ −1/2[u]s,K for all u ∈ Ds
K

(
R

N)
,

by (k2). Hence (2.1) holds for all u ∈ Ds
K (RN ).

Let E K denote the completion of C∞
0 (RN ) with respect to the Hilbertian norm

‖u‖E,K = ([u]2
s,K + ‖u‖2

2,ν

)1/2
,

induced by the inner product 〈u, v〉E,K = 〈u, v〉s,K + 〈u, v〉ν . Finally, XK is the completion of C∞
0 (RN )

with respect to the norm

‖u‖K = (‖u‖2
E,K + ‖u‖2

r,h

)1/2
,

and XK is a reflexive Banach space, as it can be shown adapting the proof of Proposition A.1.
By the above remarks and Lemma 2.1 it is clear that the embeddings XK ↪→ E K ↪→ Ds

K (RN ) ↪→
L2∗

(RN ) are continuous, with [u]s,K � ‖u‖E K for all u ∈ E K and ‖u‖E K � ‖u‖K for all u ∈ XK , and that
for any R > 0 and p ∈ [1,2∗) the embeddings E K ↪→↪→ Lp(B R) and XK ↪→↪→ Lp(B R) are compact.
Similarly, by Lemma 2.2 the embeddings E K ↪→↪→ Lq(RN , w) and XK ↪→↪→ Lq(RN , w) are compact,
and

[u]2
s,K + ‖u‖2

2,a � κ‖u‖2
E K

for all u ∈ E K , where κ is given in (1.2).
A (weak) entire solution of

LK u + a(x)u = λw(x)|u|q−2u − h(x)|u|r−2u in R
N (Lλ)

is a function u ∈ XK such that

〈u,ϕ〉s,K +
∫
RN

a(x)uϕ dx = λ

∫
RN

w(x)|u|q−2uϕ dx −
∫
RN

h(x)|u|r−2uϕ dx

for all ϕ ∈ XK . Actually the entire solutions of (Lλ) correspond to the critical points of the energy
functional Iλ : XK → R, defined by

Iλ(u) = 1

2
[u]2

s,K + 1

2
‖u‖2

2,a − λ

q
‖u‖q

q,w + 1

r
‖u‖r

r,h.

Similarly, we can prove that non-negative entire solutions of (Lλ) are exactly the critical points of the
functional

Jλ(u) = 1

2
[u]2

s,K + 1

2
‖u‖2

2,a − λ

q

∥∥u+∥∥q
q,w + 1

r
‖u‖r

r,h,

well-defined for all u ∈ XK , just adapting the previous argument of Section 2, using now (k3).
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Following the proof of Lemma 2.3 it is clear that if u ∈ XK \ {0} and λ ∈R satisfy

[u]2
s,K + ‖u‖2

2,a + ‖u‖r
r,h = λ‖u‖q

q,w ,

then λ > 0 and (2.6) continues to hold. Therefore, if (Lλ) admits a nontrivial entire solution
u ∈ XK , then λ � λ0 = (c1/c2)

2(r−q)(q−2)/q(r−2) > 0, where now in c1 and c2 the constant Cw =
γ −1/2C2∗‖w‖1/q

℘ > 0. The crucial numbers

λ∗
K = sup

{
λ > 0: (Lμ) admits only the trivial solution for all μ < λ

}
,

λ∗
Jλ

= sup
{
λ > 0: (Lμ) admits no nontrivial non-negative solution for all μ < λ

}
are well defined and λ∗

Jλ
� λ∗

K � λ0 > 0.

Lemmas 3.1–3.4, Proposition A.2, Lemmas A.3–A.5 and Lemma 4.1 continue to hold for Iλ , Jλ

and XK in place of Φλ , Ψλ and X . Clearly, now

λK = inf
u∈XK‖u‖q,w =1

{
q

2
[u]2

s,K + q

2
‖u‖2

2,a + q

r
‖u‖r

r,h

}
> 0,

λ∗∗
K = inf

{
λ > 0: (Lλ) admits a nontrivial non-negative entire solution

}
,

and λ∗∗
K � λK .

The main proof of the fact that for any λ > λ∗∗
K Eq. (Lλ) admits a nontrivial non-negative entire

solution uλ ∈ XK follows word by word, with obvious changes in notation, from the proof of Theo-
rem 4.2. Indeed, the key inequalities involving

Uε(x, y) = [
u(x) − u(y)

] · [ϕε(x) − ϕε(y)
] · K (x − y),

U (x, y) = [
u(x) − u(y)

] · [ϕ(x) − ϕ(y)
] · K (x − y)

follow by (k3) and the fact that U ∈ L1(R2N ), being XK ↪→ Ds
K (RN ). Moreover, the proof that (Lλ∗∗

K
)

admits a nontrivial non-negative entire solution in XK can proceed as in Theorem 4.3, with obvious
changes.

Finally, it goes without saying that the entire Section 5 continues to hold when Jλ , XK and E K

replace Ψλ , X and E .
Therefore, under the structural assumptions of the Introduction and (k1)–(k3) there exist λ∗

K , λ∗∗
K

and λK , with 0 < λ∗
K � λ∗∗

K � λK , such that (Lλ) admits

(i) only the trivial solution if λ < λ∗
K ;

(ii) a nontrivial non-negative entire solution if and only if λ� λ∗∗
K ;

(iii) at least two nontrivial non-negative entire solutions if λ > λK .
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