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Abstract

We study the problem of the motion of a particle on a non-flat billiard. The particle is
subject to the gravity and to a small amplitude periodic (or almost periodic) forcing and
is reflected with respect to the normal axis when it hits the boundary of the billiard. We
prove that the unperturbed problem has an impact homoclinic orbit and give a Melnikov
type condition so that the perturbed problem exhibit chaotic behavior in the sense of Smale’s
horseshoe.
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1 Introduction

Impact conditions naturally appear in several interesting mechanical systems. For example an
inverted pendulum impacting on rigid walls under external periodic excitation is studied in [8],
a Duffing vibro-impact oscillator in [16] and other interesting impact models emerge from un-
derstanding the dynamics of rigid blocks [11, 14]. Many more stimulating examples of impact
oscillators are given in books [3,4,6,9,12,13] where different numerical and analytical methods are
described to study their dynamics.

Besides the above examples, there is a broad variety of impact systems represented by billiards.
A billiard is essentially given by a convex domain Ω ⊂ R2 with piecewise smooth boundary and
a particle on it whose motion follows the usual Newton laws of dynamics until it reaches the
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boundary of Ω at which points it is reflected in the opposite direction with respect to the normal
to the boundary at that point, keeping the same scalar velocity. Of course we only consider
trajectories hitting the boundary of Ω at its regular points. The theory of flat billiards is by
now classical and very well developed. We refer the reader to [5] for more details and references.
However, other kinds of billiards are also studied. According to [10], for example, a billiard in a
broad sense is the geodesic flow on a Riemannian manifold with boundary.

In this paper we consider such a different kind of billiards: the dynamics of the particle evolves
on a surface in R3, it has unitary mass and is subject to the gravity and an almost periodic forcing
alone. Of course, as on alternative view, such a dynamics may also model a particle moving on a
flat billiard immersed in a magnetic field.

The surface is described by a graph z = f(x, y) of a function f ∈ C5
(
R2,R

)
, f(x, y) ≥ 0

and (x, y) ∈ Ω. The particle is forced to remain in the surface in the sense that, each time
it hits the boundary of S := {(x, y, z) | (x, y) ∈ Ω, z = f(x, y)} it is reflected in the opposite
direction with respect to the normal. By normal here we mean a vector ~n in the tangent plane to
S which is orthogonal to the tangent vector to ∂S at the point of ∂S. To be more precise, suppose
(x(s), y(s), f(x(s), y(s))) is a parametric representation of ∂S then ~n is orthogonal to the tangent

vector to ∂S: ~T = (x′(s), y′(s), x′(s)fx(x(s), y(s)) + y′(s)fy(x(s), y(s))) and to the normal vector

to the surface z = f(x, y): ~B = (−fx(x(s), y(s)),−fy(x(s), y(s)), 1). So ~n = ~B ∧ ~T . For example
if, as we assume in this paper, f(x, y) = 0 in a neighborhood of the boundary ∂Ω, then:

~n =

−y′(s)x′(s)
0

 .

Using D’Alembert principle the equation of motion of the particle without an almost periodic
forcing, in S \ ∂S is given by [7, p. 662]

ẍ = λfx(x, y)

ÿ = λfy(x, y)

z̈ = −λ− g
(1.1)

where g is the gravitation constant. The constraint z(t) = f(x(t), y(t)) and equation (1.1) give

−λ− g = z̈ = λfx(x, y)2 + fxxẋ
2 + 2fxy(x, y)ẋẏ + fyy(x, y)ẏ2 + λfy(x, y)2,

which implies

λ = −
g + 〈Hf (x, y)

(
ẋ
ẏ

)
,
(
ẋ
ẏ

)
〉

1 + ‖∇f‖2
, (1.2)

where ∇f and Hf is the gradient and Hessian of f , respectively. We note that ∇f = f ′∗, which we
use several times in our paper. As a consequence the problem is reduced to study the behaviour
of solutions of an almost periodic perturbation of the following unperturbed differential equation
on Ω = {(x, y) | x ≥ 0, 0 ≤ y ≤ x tanβ}:

ẍ = λfx(x, y)
ÿ = λfy(x, y)

(1.3)

where λ = λ(x, y, ẋ, ẏ) is as in (1.2), and z = f(x, y), together with the requirement that, when
(x(t), y(t)) ∈ ∂Ω then (ẋ(t), ẏ(t)) is reflected with respect to the normal to ∂Ω at (x(t), y(t)). Hence
the solution of (1.1) is forced to remain in Ω.

We emphasize that the main purpose of this paper is to introduce a new class of impact
systems modeled by nonlinear billiards with chaotic behaviour. So instead of a gravitational force,
we could consider other force fields acting on the particle under which it is moving inside Ω. In
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this paper, we consider the gravitational field since we think that this problem is interesting itself
and in addition, it is rather sophisticated for showing all difficulties of technical computations and
theoretical background.

To continue, given the messy nature of equation (1.2), we assume

f(x, y) = F
(
(x− a)2 + (y − b)2

)
(1.4)

with a > 0, 0 < b < a tanβ, 0 < β < π
2 , and F is a C5 function in [0,∞) whose support is

contained in an interval [0, r2
0] with r0 > 0 sufficiently small that the closed ball B((a, b), r0) is

contained in
◦
Ω and such that F ′ ≤ 0 with F ′(0) < 0.

Example 1.1. For illustration, as a concrete example, we take a = cos π6 =
√

3
2 , b = sin π

6 = 1
2 ,

β = π
3 and F (r) = (1− 16r)6 for 0 ≤ r ≤ r2

0 = 1
16 and F (r) = 0 for r ≥ 1

16 .
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Figure 1: The graph of f(x, y) in this concrete case on 0 ≤ x ≤ 1.2 and 0 ≤ y ≤ min{
√
3x, 1}.

The plan of this paper is as follows. In Section 2 we will prove that, if r0 is sufficiently small
then equation (1.3) has an impact homoclinic solution that satisfies assumptions (H1) − (H3)
in [2]. Then in Section 3 we construct the Melnikov function associated to the almost periodic
perturbation. Section 4 contains our main result that is obtained by an application of [2, Theorem
4.2]. Finally, in Section 5, we give another method for computing the Melnikov function that does
not make use of first integrals of unperturbed system.

Certainly our method can be extended to other kind of domains Ω as, for example, triangles
or other convex subsets of R2 and to homoclinic solutions of the unperturbed systems with more
impacts. However, for sake of simplicity, here we study homoclinic solutions with two impacts (see
Figure 3).

2 Homoclinic impact solutions

Passing to polar coordinates around the point (a, b), i.e. taking

x = a+ ρ cosϕ, y = b+ ρ sinϕ (2.1)

we get f(x, y) = F (ρ2) and then

∇f(x, y) = 2F ′(ρ2)
( x−a
y−b

)
,

Hf (x, y) = 2F ′(ρ2)I + 4F ′′(ρ2)
(

(x−a)2 (x−a)(y−b)
(x−a)(y−b) (y−b)2

) (2.2)
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that is
fx(x, y) = 2F ′

(
ρ2
)
ρ cosϕ, fy(x, y) = 2F ′

(
ρ2
)
ρ sinϕ

fxx(x, y) = 2F ′
(
ρ2
)

+ 4F ′′
(
ρ2
)
ρ2 cos2 ϕ,

fxy(x, y) = 4F ′′
(
ρ2
)
ρ2 cosϕ sinϕ,

fyy(x, y) = 2F ′
(
ρ2
)

+ 4F ′′
(
ρ2
)
ρ2 sin2 ϕ.

From (1.2) it follows

λ = λ
(
ρ2, ρ̇2, ϕ̇2

)
:= −

g + 2F ′
(
ρ2
) (
ρ2ϕ̇2 + ρ̇2

)
+ 4ρ2ρ̇2F ′′

(
ρ2
)

1 + 4ρ2F ′ (ρ2)
2 (2.3)

and (1.1) reads

− sinϕ (2ϕ̇ρ̇+ ρϕ̈) + cosϕ
(
−ρϕ̇2 + ρ̈

)
= 2λ

(
ρ2, ρ̇2, ϕ̇2

)
F ′
(
ρ2
)
ρ cosϕ

cosϕ (2ϕ̇ρ̇+ ρϕ̈) + sinϕ
(
−ρϕ̇2 + ρ̈

)
= 2λ

(
ρ2, ρ̇2, ϕ̇2

)
F ′
(
ρ2
)
ρ sinϕ.

Since these equations holds for any value of (ρ, ϕ) we get, equating coefficients of cosϕ and sinϕ:{
ρ̈− ρϕ̇2 = 2λ

(
ρ2, ρ̇2, ϕ̇2

)
F ′
(
ρ2
)
ρ

2ϕ̇ρ̇+ ρϕ̈ = 0.
(2.4)

Clearly the second equation in (2.4) is equivalent to

ϕ̇ρ2 = c (2.5)

for a constant c ∈ R. Since we are looking for a solution such that limt→±∞ ρ(t)2 + ρ̇(t)2 = 0 and
ρ(t) > 0 we see that c = 0 in (2.5) and hence ϕ̇(t) = 0. So (2.4) has the form

ρ̈ = 2λ
(
ρ2, ρ̇2, 0

)
F ′
(
ρ2
)
ρ (2.6)

and ϕ̇ = 0 (i.e. ϕ = constant). Hence the projection onto the (x, y) plane of impact homoclinic
solutions of (1.1) evolve along straight lines in some intervals such as ]−∞, t∗1] and [t∗2,∞[. Changing
t with −t, if needed, we may assume that t∗1 and t∗2 are such that y(t∗1) = 0 and (x(t), y(t)) ∈ Ω for
any t < t∗1 and y(t∗2) = x(t∗2) tanβ = 0 and (x(t), y(t)) ∈ Ω for any t > t∗2. So for either t < t∗1 or
t > t∗2 we have

x(t) = a+ ρ(t) cosϕ,
y(t) = b+ ρ(t) sinϕ

where ϕ is constant and ρ(t) is a solution of (2.6) such that limt→±∞ ρ(t) = 0. Moreover at t = t∗1
or t = t∗2 the solution is reflected so that ẏ((t∗1)+) = −ẏ((t∗1)−) and(

ẋ((t∗2)+)
ẏ((t∗2)+)

)
= Mβ

(
ẋ((t∗2)−)
ẏ((t∗2)−)

)
and Mβ is the matrix of the reflection with respect to the line y = x tanβ i.e.:

Mβ =

(
cos 2β sin 2β
sin 2β − cos 2β

)
.

As a first step we look then for solutions of (2.6) such that limt→∞ ρ(t) = 0. Setting r = ρ2

and w = ρ̇2 (2.6) reads

ṙ = 2ρρ̇
ẇ = 4ρρ̇λ(r, w, 0)F ′(r)
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so that dw
dr = 2λ(r, w, 0)F ′(r). Hence we look for solutions of (2.6) of the form ρ̇2 = w(ρ2) with

w(0) = 0. We have seen that such a function w(r) satisfies

w′(r) = 2λ (r, w(r), 0)F ′(r) = −4
F ′(r) + 2rF ′′(r)

1 + 4rF ′(r)2
F ′(r)w(r)− 2gF ′(r)

1 + 4rF ′(r)2

together with w(0) = 0. Since d
dr log 1

1+4rF ′(r)2
= −4F

′(r)+2rF ′′(r)
1+4rF ′(r)2 F ′(r), we obtain

w(r) =
2g (F (0)− F (r))

1 + 4rF ′(r)2

or

ρ̇2 =
2g
(
F (0)− F (ρ2)

)
1 + 4ρ2F ′(ρ2)2

.

Since F ′ ≤ 0 with F ′(0) < 0, we get F (0)−F (r) > 0 for any r > 0 and so ρ̇ 6= 0 for any t ∈ [t∗2,∞[.
As a consequence ρ̇(t) < 0 for any t in the same interval and

ρ̇ = −

√
2g (F (0)− F (ρ2))

1 + 4ρ2F ′(ρ2)2
.

Then we obtain the following equation for r = ρ2:

ṙ = −

√
8gr(F (0)− F (r))

1 + 4rF ′(r)2
= −r

√
8gH(r)

1 + 4rF ′(r)2
(2.7)

where F (0)− F (r) = rH(r), H ∈ C4 ([0,∞), (0,∞)). Since F (r) < F (0) for any r > 0 we see that
equation (2.7) does not have fixed points in {r > 0} and ṙ < 0. So a solution of (2.7) starting from
a given r∗ > 0 is defined on [0,∞) and its ω−limit set is r = 0. Next u(t) = r(−t) satisfies

u̇ = u

√
8gH(u)

1 + 4uF ′(u)2
(2.8)

and then r(−t) is strictly increasing and positive. As a consequence at a certain time t0 it will
result r(−t0) = r2

0 but then for t > t0, u(t) = r(−t) satisfies:

u̇ =
√

8gF (0)u

with u(t0) = r2
0. Hence r(−t) exists for any t > 0 and satisfies lim

t→∞
r(−t) = +∞. As a consequence

the α−limit set of any solution of (2.7) starting from a positive r∗ is +∞. So, any solution of (2.7)
starting from r∗ > 0 is strictly decreasing and satisfies:

lim
t→−∞

r(t) =∞;

lim
t→+∞

r(t) = 0.

Let r0(t) be any (fixed) positive solution of (2.7). Then any other positive solution of equation
(2.7) is obtained from r0(t) by a time shift r1(t) = r0(t+t1), t1 satisfying r0(t1) = r1(0). Moreover,
r0(−t) solves equation (2.8). We set

ρ0(t) =
√
r0(t).

ρ0(t) is a decreasing positive function such that

lim
t→∞

ρ0(t) = 0, lim
t→−∞

ρ0(t) = +∞
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hence ρ0(t) takes all positive values once when t varies in R and for any given (x, y) ∈ Ω \ {(a, b)},
there exists a unique solution t = tx,y of

ρ0(tx,y) =
√

(x− a)2 + (y − b)2

So we have stable and unstable solutions:

γs(t, x, y) = (a, b) +
ρ0(t+ tx,y)√

(x− a)2 + (y − b)2
(x− a, y − b) t ≥ 0 (2.9)

and

γu(t, x, y) = (a, b) +
ρ0(tx,y − t)√

(x− a)2 + (y − b)2
(x− a, y − b) t ≤ 0 (2.10)

of equation (1.3) with γs,u(0, x, y) = (x, y).
We recall that we have chosen F so that its support is a subset of the interval [0, r2

0] where
r0 > 0 is chosen so that the closed ball with radius r0 and center at (a, b) is contained in the
interior of Ω. As a consequence the dynamics in Ω \B((a, b), r0) (where F (ρ2) = 0) is governed by
the equation:

ρ̈− ρϕ̇2 = 0
2ϕ̇ρ̇+ ρϕ̈ = 0

that on account of (2.1), is equivalent to

ẍ = 0, ÿ = 0.

So, if (x0, y0, ẋ0, ẏ0) are the initial values of the solution we have

(x(t)− x0)ẏ0 = (y(t)− y0)ẋ0

that is: in Ω \B((a, b), r0) solutions evolve along straight lines.
Summarizing we have seen that, if the support of f(x, y) := F (ρ2), ρ2 = (x− a)2 + (y− b)2), is

contained in the ball B := B((a, b), r0) with r0 sufficiently small, then impact homoclinic solutions
evolve on straight lines. Impact homoclinic orbits are then constructed as follows. We draw a
straight line from (a, b) until it reaches the x−axis y = 0. From the intersection point we start a
new straight line in Ω making a symmetric angle with the normal to y = 0 at this intersection point,
until it reaches the line y = x tanβ where we repeat the procedure. We obtain a homoclinic orbit
if and only if this last straight line passes through the fixed point (a, b). Because of the symmetry
this condition is equivalent to the following geometric construction. We take the symmetric points

P

O A

B

C

D

H

K

Figure 2: The impact homoclinic orbit (in solid red) and its construction using symmetries

of P = (a, b) with respect to the lines y = 0 and y = x tanβ and join them with a straight line
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(see Figure 1). The impact points of the homoclinic orbit are the intersections A and B of these
lines with the lines y = 0 and y = x tanβ and the orbit of the homoclinic solution is represented
by the triangle whose vertex are A, B and the fixed point (a, b). Note that in order that this is
the homoclinic orbit we also need than the closure of the ball B((a, b), r0) should not intersect the
segment AB.

This construction should convince the reader of the uniqueness of the impact homoclinic orbit.
Moreover it makes it clear why we need to take the edges of the billiard non orthogonal. In fact,
if the impact lines are orthogonal, the line through the symmetric points of (a, b) with respect to
the orthogonal axis passes through the origin and then we do not have impacts. Even worse is
the case π

2 < β < π as the reader can easily verify. Since solutions of (1.3) that belong to a small
neighborhood of the homoclinic orbit take approximately the same time as the homoclinic orbit
between the lines y = 0 and y = x tanβ we will forget this branch of the solutions and restrict
our attention to the branches tending to the fixed point. So we define a map R from the manifold
{(x, 0, u, v) | x > 0, u < 0, v < 0} (corresponding to the manifold of intersection points of solutions
of (1.3) with the line y = 0) into the manifold {(x, x tanβ, u, v)} that takes the above reflections
and translation into account. This map is the combination of the following: first we reflect the
velocity with respect to the axis y = 0, then we move linearly along this direction until we reach
the manifold y = x tanβ where we take the reflection with respect to x+y tanβ = 0. Summarizing,
starting from the point (x, 0, u, v) with x > 0, u < 0, v < 0, first we take the first reflection to get
the point (x, 0, u,−v); next we consider the intersection of the half-line (x+ su,−sv), s ≥ 0 with
the half-line y = x tanβ, x > 0. Thus we solve (x+ su) tanβ = −sv to get s = −x tan β

v+u tan β , and the
intersection point is (

xv

v + u tanβ
,
xv tanβ

v + u tanβ

)
.

Since there is no force acting on the ball during this part of the trajectory the particle reaches the

intersection point
(

xv
v+u tan β ,

xv tan β
v+u tan β

)
with speed (u,−v). So the velocity of the particle after the

reflection along the line y = x tanβ, is

Mβ

(
u
−v

)
=

(
u cos 2β − v sin 2β
v cos 2β + u sin 2β

)
.

Summarizing, we get

R(x, 0, u, v) =

(
xv

v + u tanβ
,
xv tanβ

v + u tanβ
, u cos 2β − v sin 2β, v cos 2β + u sin 2β

)
for x > 0, u < 0, v < 0. Now we look for such an array starting from (a, b) which after the above
reflections passes true this point (a, b). As we have seen the reflecting points of such an orbit are
obtained as follows: we reflect (a, b) with respect to y = 0 to get P1 := (a,−b) and also with
respect y = tanβx, to get P2 := (a cos 2β + b sin 2β,−b cos 2β + a sin 2β). The reflecting points are
the intersection of the lines y = 0 and y = x tanβ with the segment connecting P1 and P2:

Sa,b :=
{
s(a,−b) + (1− s) (a cos 2β + b sin 2β,−b cos 2β + a sin 2β) | s ∈ [0, 1]

}
.

The first intersection point is given by

I1 = Sa,b ∩ {y = 0, x > 0} =

( (
a2 + b2

)
cosβ

a cosβ + b sinβ
, 0

)
(2.11)

for s1 = 2a cos β−b cos 2β csc β
2a cos β+2b sin β . Using a > b cotβ we derive 2a cosβ − b cos 2β cscβ > 2b cotβ cosβ −

b cos 2β cscβ = b cscβ > 0. Next we have 1− s1 = b csc β
2a cos β+2b sin β > 0. Hence 0 < s1 < 1.
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The second intersection point is given by

I2 = Sa,b ∩ {y = x tanβ, x > 0} =

((
a2 + b2

)
cos2 β

a
,

(
a2 + b2

)
cosβ sinβ

a

)
(2.12)

for s2 = a−b cot β
2a . Clearly 0 < s2 < 1.

Next, it is elementary to see that the distance of the point (a, b) from the segment Sa,b is
2b(a sin β−b cos β)√

a2+b2
and from the line y = x tanβ is a sinβ − b cosβ. So we suppose that

r0 < min

{
2b(a sinβ − b cosβ)√

a2 + b2
, a sinβ − b cosβ, b

}
. (2.13)

In Example 1.1, we have r0 = 1
4 and the above r.h.s. equals 1

2 .

Next shift time in such a way that ρ0(0) = r0. Then, for t ≤ 0, ρ̇0(t) = −
√

2gF (0) and so

ρ0(t) = r0 − t
√

2gF (0). Now, our impact homoclinic orbit must be of the form:

γ(t) =

{
γu(t, x, y) for t < 0
γs(t, x, y) for t ≥ 0

where (x, y) has to be chosen so that

γu(0, x, y) = I1 and γs(0, x, y) = I2.

The first equality is equivalent to solve, for t, the equation

ρ0(t) = ‖I1 − ( ab ) ‖ = b

√
a2 + b2

a cosβ + b sinβ

and, similarly, the second is equivalent to solve

ρ0(t) = ‖I2 − ( ab ) ‖ =

√
a2 + b2(a sinβ − b cosβ)

a

Since ‖I1 − ( ab ) ‖ > r0 and ‖I2 − ( ab ) ‖ > r0, the two equations have, respectively, the solutions:

t−(a,b) =
1√

2gF (0)

[
r0 −

b
√
a2 + b2

a cosβ + b sinβ

]
< 0

since b
√
a2+b2

a cos β+b sin β > b, and

t+(a,b) =
1√

2gF (0)

[
r0 −

√
a2 + b2

a
(a sinβ − b cosβ)

]
< 0

since
√
a2+b2

a (a sinβ − b cosβ) > a sinβ − b cosβ. So the impact homoclinic solution is:

γ(t) =


γ−(t) := ( ab )−

ρ0(t−
(a,b)
−t)

√
a2+b2

(
a sin β−b cos β
a cos β+b sin β

)
for t < 0

γ+(t) := ( ab )−
ρ0(t+

(a,b)
+t)

√
a2+b2

(
a sin β+b cos β
b sin β−a cos β

)
for t > 0

(2.14)

In Figure 3 we draw the homoclinic orbit (γ(t), f(γ(t)) of (1.1) when F (r) is as in Example 1.1.
For such a function we have indeed t±(a,b)

.
= −0.0739158.
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Figure 3: Impact homoclinic orbit for Figure 1.

Recall

ρ0

(
t−(a,b)

)
= ‖I1 − (a, b)‖, ρ0

(
t+(a,b)

)
= ‖I2 − (a, b)‖,

ρ̇0

(
t−(a,b)

)
= ρ̇0

(
t+(a,b)

)
= −

√
2gF (0),

ρ̈0

(
t−(a,b)

)
= ρ̈0

(
t+(a,b)

)
= 0.

(2.15)

Hence

γ−(0) = I1, γ̇−(0) =

√
2gF (0)√
a2+b2

(
b cos β−a sin β
−a cos β−b sin β

)
γ+(0) = I2, γ̇+(0) =

√
2gF (0)√
a2+b2

(
b cos β+a sin β
−a cos β+b sin β

)
.

(2.16)

It is easy to check that it actually holds

R (γ−(0), γ̇−(0)) = (γ+(0), γ̇+(0)) .

Now we verify assumptions (H1)–(H3) from [2]. To this end, we rewrite (1.3) as the first order
ODE

ẋ1 = x2

ẏ1 = y2

ẋ2 = λfx(x1, y1)
ẏ2 = λfy(x1, y1)

(2.17)

in Ω− := {(x1, y1, x2, y2) | x1 > 0, 0 < y1 < x1 tanβ}. Then E := (a, b, 0, 0) is an equilibrium of
(2.17) and (γ(t), γ̇(t)), where γ(t) is the function defined in (2.14), is an impact homoclinic orbit
to E of (2.17). The linearization of (2.17) in E is

u̇1 = u2

v̇1 = v2

u̇2 = −2gF ′(0)u1

v̇2 = −2gF ′(0)v1.

Since F ′(0) < 0 we see that E is a hyperbolic equilibrium of (2.17) with 2-dimensional stable
and unstable manifolds W s and Wu. In fact the Jacobian matrix at (a, b, 0, 0) has the double
eigenvalues ∓µ, µ =

√
2g|F ′(0)| with stable and unstable spaces given resp. by:

Us = span

{(
1
0
−µ
0

)
,

(
0
1
0
−µ

)}
and Uu = span

{(
1
0
µ
0

)
,

(
0
1
0
µ

)}
.
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Hence [2, (H1)] holds. Next we have G(x1, y1, x2, y2) = y1(y1 − x1 tanβ) and then (we recall that
∇G(x1, y1, x2, y2) = G′(x1, y1, x2, y2)∗)

G′(x1, y1, x2, y2) = (−y1 tanβ, 2y1 − x1 tanβ, 0, 0)

from which it follows:

G′(γ−(0), γ̇−(0)) =

(
0,− a2 + b2

a cosβ + b sinβ
sinβ, 0, 0

)
.

So, using also (2.11), (2.12) and (2.16):

G′(γ−(0), γ̇−(0))


√

2gF (0)

a2+b2
(b cos β−a sin β)

−
√

2gF (0)

a2+b2
(a cos β+b sin β)

λfx(I1)
λfy(I1)

 =
√

2gF (0)(a2 + b2) sinβ

Similarly we get:

G′(γ+(0), γ̇+(0))


√

2gF (0)

a2+b2
(b cos β+a sin β)

−
√

2gF (0)

a2+b2
(a cos β−b sin β)

λfx(I2)
λfy(I2)

 = −
√

2gF (0)(a2 + b2) sinβ

which proves [2, (H2)] .
Next, we know that (γ−(0), γ̇−(0)) ∈Wu and, from equation (2.10) we also know that:

(x̃, ỹ, ũ, ṽ) ∈Wu if and only if (x̃, ỹ) = γu(t, x, y) and (ũ, ṽ) = γ̇u(t, x, y)

where γu(t, x, y) are the functions given by equation (2.10). Of course, to describe completely the
unstable manifold we do not need to let (x, y) vary in a complete neighborhood of (a, b) since

we have t as parameter and

(
x−a√

(x−a)2+(y−b)2
, y−b√

(x−a)2+(y−b)2

)
belongs to the circle of radius 1

centered at (a, b). In other words we can describe Wu by letting t vary and taking (u, v) =(
x−a√

(x−a)2+(y−b)2
, y−b√

(x−a)2+(y−b)2

)
in the circle of radius 1 around (a, b). So, choosing t∗ so that

ρ0(t∗) = 1, Wu is described as:

Wu =

{(
a+ρ0(t∗−t)u
b+ρ0(t∗−t)v
−ρ̇0(t∗−t)u
−ρ̇0(t∗−t)v

)
| t ∈ R, u2 + v2 = 1

}

and (γ−(0), γ̇−(0)) corresponds to

t = t∗ − t−a,b u = u− := −a sinβ − b cosβ√
a2 + b2

, v = v− := −b sinβ + a cosβ√
a2 + b2

.

Then, using (2.15) we obtain:

NP− = T(γ−(0),γ̇−(0))W
u = span

{( u−
v−
0
0

)
,

( v−
−u−
kv−
−ku−

)
, k =

√
2gF (0)

‖I1 − (a, b)‖

}
. (2.18)

Similarly the stable manifold W s of the fixed point (a, b, 0, 0) is described as:

W s =

{(
a+ρ0(t∗+t)u
b+ρ0(t∗+t)v
ρ̇0(t∗+t)u
ρ̇0(t∗+t)v

)
| t ∈ R, u2 + v2 = 1

}
,
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where (γ+(0), γ̇+(0)) corresponds to

t = t+a,b − t
∗ u = u+ := −a sinβ + b cosβ√

a2 + b2
, v = v+ :=

a cosβ − b sinβ√
a2 + b2

,

and

RP+ = T(γ+(0),γ̇+(0))W
s = span

{( u+
v+
0
0

)
,

( v+
−u+

−hv+
hu+

)
, h =

√
2gF (0)

‖I2 − (a, b)‖

}
. (2.19)

Incidentally, we note that:

γ−(t) = ( ab ) + ρ0(t−(a,b) − t)
( u−
v−

)
γ+(t) = ( ab ) + ρ0(t+(a,b) + t)

( u+
v+

) (2.20)

Next, NG′ (γ−(0), γ̇−(0)) = {e2}⊥. So (cf. [2]):

S ′ := NP− ∩NG′ (γ−(0), γ̇−(0)) = span

{(
1
0
kv2−

−ku−v−

)}

or, using ‖I1 − ( ab ) ‖v− = −b:

S ′ = span




− b

v2−
0√

2gF (0)v−

−
√

2gF (0)u−




Let S ′′′ := DR(γ−(0), γ̇−(0))S ′. Then [2, (H3)] reads: dim[RP+ +S ′′′] = 3. To prove this equality
we first extend R to R4 as follows:

R(x, y, u, v) =

(
xv

v + u tanβ
,
xv tanβ

v + u tanβ
, u cos 2β − v sin 2β, v cos 2β + u sin 2β

)
.

As it has been observed in [2] the way we choose such an extension does not affect the result. We
get the Jacobian matrix:

JR(x, y, µu−, µv−) =


−
√
a2+b2

a v− cosβ 0 −a
2+b2

a2µ xv− cosβ sinβ a2+b2

a2µ xu− cosβ sinβ

−
√
a2+b2

a v− sinβ 0 −a
2+b2

a2µ xv− sin2 β a2+b2

a2µ xu− sin2 β

0 0 cos(2β) − sin(2β)
0 0 sin(2β) cos(2β)


then

JR(x, y, µu−, µv−)


1
0
kv2
−

−ku−v−

 =


−a

2+b2

a2 v− cosβ
(
k
µx(u2

− + v2
−) sinβ + a√

a2+b2

)
−a

2+b2

a2 v− sinβ
(
k
µx(u2

− + v2
−) sinβ + a√

a2+b2

)
kv−(v− cos(2β) + u− sin(2β))
kv−(v− sin(2β)− u− cos(2β))



=


−a

2+b2

a2 v− cosβ
(
k
µx sinβ + a√

a2+b2

)
−a

2+b2

a2 v− sinβ
(
k
µx sinβ + a√

a2+b2

)
−kv− a cos β−b sin β√

a2+b2

−kv− a sin β+b cos β√
a2+b2

 = v−


−a

2+b2

a2 cosβ
(
k
µx sinβ + a√

a2+b2

)
−a

2+b2

a2 sinβ
(
k
µx sinβ + a√

a2+b2

)
−kv+

ku+

 .
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With µ =
√

2gF (0), x = (a2+b2) cos β
a cos β+b sin β and k =

√
2gF (0)

−b v− we get k
µx =

√
a2+b2

b cosβ and then:

JR(γ−(0), γ̇−(0))


1
0
kv2
−

−ku−v−

 = v−


− (a2+b2)3/2

a2

(
sin β cos β

b + a
a2+b2

)
cosβ

− (a2+b2)3/2

a2

(
sin β cos β

b + a
a2+b2

)
sinβ

√
2gF (0)

b v−v+

−
√

2gF (0)

b v−u+



= −v
2
−
b


(a2+b2)3/2

a2v−

(
sinβ cosβ + ab

a2+b2

)
cosβ

(a2+b2)3/2

a2v−

(
sinβ cosβ + ab

a2+b2

)
sinβ

−
√

2gF (0)v+√
2gF (0)u+

 = −v
2
−
b


(a2+b2)3/2

a2 u+ cosβ
(a2+b2)3/2

a2 u+ sinβ

−
√

2gF (0)v+√
2gF (0)u+


since

u+v− = sinβ cosβ +
ab

a2 + b2
.

So

S ′′′ = R′ (γ−(0), γ̇−(0))S ′ = span




(a2+b2)3/2 cos β

a2
u+

(a2+b2)3/2 sin β

a2
u+

−
√

2gF (0)v+√
2gF (0)u+




Clearly dim[RP+ + S ′′′] = 3 if and only if

rank


u+ v+

(a2+b2)3/2

a2 u+ cosβ

v+ −u+
(a2+b2)3/2

a2 u+ sinβ

0 −
√

2gF (0)

‖I2−( ab )‖
v+ −

√
2gF (0)v+

0

√
2gF (0)

‖I2−( ab )‖
u+

√
2gF (0)u+

 = 3 (2.21)

Now:

det

u+ v+
(a2+b2)3/2

a2 u+ cosβ

v+ −u+
(a2+b2)3/2

a2 u+ sinβ
0 1

‖I2−( ab )‖
1

 = −1− (a2 + b2)3/2

a2‖I2 − ( ab ) ‖
u+(u+ sinβ − v+ cosβ)

= −1 +
(a2 + b2)3/2

a2‖I2 − ( ab ) ‖
u+

a√
a2 + b2

= −1 +
a2 + b2

a‖I2 − ( ab ) ‖
u+

= −1− u+

u−
=

2a sinβ

b cosβ − a sinβ
6= 0.

So dim[RP+ + S ′′′] = 3 and condition (H3) of [2] is verified. Now, looking at the matrix in (2.21)
we easily check that a unitary vector ψ ∈ [RP+ + S ′′′]⊥ is given by:

ψ =


0
0
u+

v+

 = − 1√
2gF (0)

 0
0

γ̇+(0)

 (2.22)
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3 Constructing the Melnikov function

Our purpose, in this paper, is to study the chaotic behaviour of the solutions of a small amplitude
perturbation of equation (1.3) i.e. of

ẍ = λfx(x, y) + εh1(t, x, y, ẋ, ẏ, ε)
ÿ = λfy(x, y) + εh2(t, x, y, ẋ, ẏ, ε).

(3.1)

We expect that if the perturbation is of sufficiently small amplitude and satisfies suitable recurrence
conditions such as almost periodicity, the resulting equation exhibits chaotic behavior in the sense
that a Smale-like horseshoe exists. To this end, according to [2, Theorem 4.2], we need to construct
the Melnikov function associated to the perturbed equation, which, in turn, depends on the function

ψ(t) :=

 X−1
− (t)∗P ∗−R

∗
−DR(γ−(0), γ̇−(0))∗ψ for t ≤ 0

X−1
+ (t)∗(I− P ∗+)ψ for t > 0.

Here X±(t) are the fundamental matrices of the linear variational system

ẋ1 = x2

ẏ1 = y2

ẋ2 = fx(γ±(t))λ′(γ±(t), γ̇±(t))

( x1
y1
x2
y2

)
+ λ(γ±(t), γ̇±(t))[fxx(γ±(t))x1 + fxy(γ±(t))y1]

ẏ2 = fy(γ±(t))λ′(γ±(t), γ̇±(t))

( x1
y1
x2
y2

)
+ λ(γ±(t), γ̇±(t))[fxy(γ±(t))x1 + fyy(γ±(t))y1]

satisfying X±(0) = I, P± are the projections of the dichotomies of the linear variational system
along (γ±(t), γ̇±(t)) on R±, whose kernel and range have been described in (2.18), (2.19), and R−
is the projection onto NG′(γ−(0), γ̇−(0)) along (γ̇−(0), γ̈−(0)).

First we simplify the expression of ψ(t). From the expression of the Jacobian matrix JR(x, y, µu−, µv−)
and (2.22) we see that

R′(γ−(0), γ̇−(0))ψ = −


0
0
u−
v−

 .

Next, we already saw that

∇G(γ−(0), γ̇−(0)) =

√
a2 + b2

v−
sinβ


0
1
0
0


and (

γ̇−(0)
γ̈−(0)

)
=
√

2gF (0)


u−
v−
0
0

 .

So the matrix of R− is given by: 
1 −u−v− 0 0

0 0 0 0
0 0 1 0
0 0 0 1

 .
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Then

R∗−R
′(γ−(0), γ̇−(0))ψ = −


0
0
u−
v−


and, finally:

P ∗−R
∗
−DR(γ−(0), γ̇−(0))ψ = −P ∗−


0
0
u−
v−

 = −


0
0
u−
v−


since we can take P− to be the an orthogonal matrix and

(
0
0
u−
v−

)
is orthogonal to NP− (see (2.18)).

Similarly, we can take P+ to be an orthogonal matrix and

(
0
0
u+
v+

)
is orthogonal to RP+. So:

ψ(t) =


−X−1

− (t)∗
(

0
0
u−
v−

)
if t ≤ 0

X−1
+ (t)∗

(
0
0
u+
v+

)
if t ≥ 0

= − 1√
2gF (0)

{
−X−1

− (t)∗
(

0
γ̇−(0)

)
if t ≤ 0

X−1
+ (t)∗

(
0

γ̇+(0)

)
if t ≥ 0

Note that ψ+(t) = X−1
+ (t)∗

(
0
0
u+
v+

)
and ψ−(t) = X−1

− (t)∗
( 0

0
−u−
−v−

)
are the (bounded on R±) solu-

tions of the adjoint variational system with the initial conditions

(
0
0
u+
v+

)
and

( 0
0
−u−
−v−

)
respectively.

We now show how the existence of first integrals can be used to obtain ψ±(t) without the need
of computing X±(t). We will need the following

Theorem 3.1. Let z0(t) be a solution on an interval I0 ⊆ R of the ODE ż = g(z), with z ∈ RN
and g of class C1. Suppose that the equation has a smooth first integral J of class C2, i.e.,
〈g(z),∇J(z)〉 = 0 for any z ∈ RN . Then w(t) = ∇J(z0(t)) is a solution on I0 of the adjoint
system w = −Dg(z0(t))∗w along z0(t).

Proof. Let HJ be the Hessian of J . Differentiating 〈g(z),∇J(z)〉 = 0 for any z ∈ RN we get

〈Dg(z)v,∇J(z)〉+ 〈g(z), HJ(z)v〉 = 0

for any z, v ∈ RN . This is equivalent to

Dg(z)∗∇J(z) +HJ(z)g(z) = 0

for any z ∈ RN . Then we derive

ẇ(t) = HJ(z0(t))ż0(t) = HJ(z0(t))g(z0(t)) = −Dg(z0(t))∗∇J(z0(t)) = −Dg(z0(t))∗w(t).

The proof is finished.
To apply Theorem 3.1 to our case we observe that, as it is well known, the motion of our

particle for (1.1) has the energy
ẋ2

2
+
ẏ2

2
+
ż2

2
+ gz

consisting of the kinetic and potential parts. Hence (1.3) has the first integral

H =
ẋ2

2
+
ẏ2

2
+

(ẋfx(x, y) + ẏfy(x, y))2

2
+ gf(x, y)
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Corresponding to H we have the Lagrangian:

L(x, y, ẋ, ẏ) =
ẋ2

2
+
ẏ2

2
+

(ẋfx(x, y) + ẏfy(x, y))2

2
− gf(x, y)

and the Euler-Lagrangian equation is (1.3). We plug (1.4) into the above formulas to get:

H =
1

2

(
X2 + Y 2

)
+ 2

〈(
X
Y

)
,

(
x− a
y − b

)〉2

F ′[(x− a)2 + (y − b)2]2 + gF [(x− a)2 + (y − b)2]

L =
1

2

(
X2 + Y 2

)
+ 2

〈(
X
Y

)
,

(
x− a
y − b

)〉2

F ′[(x− a)2 + (y − b)2]2 − gF [(x− a)2 + (y − b)2]

with X = ẋ and Y = ẏ. We take H(x, y,X, Y ) as J and derive

H ′(x, y,X, Y ) =

(
2F ′((a− x)2 + (b− y)2)

(
2X(−aX + xX − bY + yY )F ′((a− x)2 + (b− y)2)

+(a− x)
(
−g − 4(aX − xX + bY − yY )2F ′′((a− x)2 + (b− y)2)

))
,

2F ′((a− x)2 + (b− y)2)

(
2Y (−aX + xX − bY + yY )F ′((a− x)2 + (b− y)2)

+(b− y)
(
−g − 4(aX − xX + bY − yY )2F ′′((a− x)2 + (b− y)2)

))
,

X + 4(a− x)(aX − xX + bY − yY )F ′((a− x)2 + (b− y)2)2,

Y + 4(b− y)(aX − xX + bY − yY )F ′((a− x)2 + (b− y)2)2

)
.

(3.2)
Inserting (x, y,X, Y ) = (γ+(t), γ̇+(t)) into (3.2) and using (2.3), (2.6), (2.20), and the definition of
u+, v+ we derive

∇H(γ+(t), γ̇+(t)) =


2u+ρ+F

′(ρ2
+)
(
g + 2ρ̇2

+

(
F ′(ρ2

+) + 2ρ2
+F
′′(ρ2

+)
))

2v+ρ+F
′(ρ2

+)
(
g + 2ρ̇2

+

(
F ′(ρ2

+) + 2ρ2
+F
′′(ρ2

+)
))

u+

(
1 + 4ρ2

+F
′(ρ2

+)2
)
ρ̇+

v+

(
1 + 4ρ2

+F
′(ρ2

+)2
)
ρ̇+


=
(
1 + 4ρ2

+F
′(ρ2

+)2
)

(−u+ρ̈+,−v+ρ̈+, u+ρ̇+, v+ρ̇+)
∗

where ρ+ = ρ+(t) := ρ0(t+(a,b) + t). Similarly, with (x, y,X, Y ) = (γ−(t), γ̇−(t)):

∇H(γ−(t), γ̇−(t)) =
(
1 + 4ρ2

−F
′(ρ2
−)2
)

(−u−ρ̈−,−v−ρ̈−, u−ρ̇−, v−ρ̇−)
∗
,

where ρ− = ρ−(t) := ρ0(t−(a,b) − t). From (2.20) we also get

γ±(t) = ( ab ) + ρ±(t)
( u±
v±

)
.

Now, Theorem 3.1 implies that ∇H(γ−(t), γ̇−(t)) and ∇H(γ−(t), γ̇−(t)) are (bounded) solutions
of the adjoint equation on the intervals (−∞, 0] and [0,∞) respectively. Moreover (see also (2.15))

∇H(γ±(0), γ̇±(0)) =
(
1 + 4ρ±(0)2F ′(ρ±(0)2)2

)
(0, 0, u±ρ̇±(0), v+ρ̇±(0))

∗
= −

√
2gF (0)ψ(0±).

and then we get:

ψ(t) = − 1√
2gF (0)

∇H(γ(t), γ̇(t)), t 6= 0.
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We can further simplify the expression ψ(t) observing that, from (1.4) it follows:

∇H(γ±(t), γ̇±(t)) = −
(
1 + 4ρ2

±(t)F ′(ρ2
±(t))2

)( ρ̈±(t)
( u±
v±

)
−ρ̇±(t)

( u±
v±

))
= [1 + ‖∇f(γ±(t))‖2]

(
ρ̈±(t)

( u±
v±

)
−ρ̇±(t)

( u±
v±

)) .
So:

ψ(t) =
1 + ‖∇f(γ±(t))‖2√

2gF (0)

(
−ρ̈±(t)

( u±
v±

)
ρ̇±(t)

( u±
v±

) ) =
1 + ‖∇f(γ±(t))‖2√

2gF (0)

(
−γ̈±(t)
γ̇±(t)

)
, t 6= 0. (3.3)

Then, according to [2, Theorem 4.2] the Melnikov function characterizing chaotic behavior of the
solutions of (3.1) is:

M(α) =

∫ ∞
−∞

ψ∗(t)

(
0
0

h1(t+α,γ(t),γ̇(t),0)
h2(t+α,γ(t),γ̇(t),0)

)
dt

=
1√

2gF (0)

[∫ ∞
−∞

[1 + ‖∇f(γ(t))‖2]〈γ̇(t),
(
h1(t+α,γ(t),γ̇(t),0)
h2(t+α,γ(t),γ̇(t),0)

)
〉dt
] (3.4)

where we use the notation of (2.14).
We conclude this Section with a remark. Equation (1.3) has another first integral, independent

of H that can be constructed as follows. Consider the one parameter family of rotations in R2

given by

A(s)

(
x
y

)
=

(
a
b

)
+B(s)

(
x− a
y − b

)
, B(s) =

(
cos s sin s
− sin s cos s

)
.

Then H and L are invariant under A(s) in the sense that

H(A(s)(x, y), B(s)(X,Y )) = H(x, y,X, Y ), L(A(s)(x, y), B(s)(X,Y )) = L(x, y,X, Y ).

Note D(x,y) [A(s) ( xy )] = B(s). From Noether theorem [1], we know that

I(x, y,X, Y ) = D(X,Y )L(x, y,X, Y )A′(0)

(
x
y

)
=

(
X + 4(a− x)(aX − xX + bY − yY )F ′((a− x)2 + (b− y)2)2

Y + 4(b− y)(aX − xX + bY − yY )F ′((a− x)2 + (b− y)2)2

)(
y − b
a− x

)
= −bX +Xy + (a− x)Y

is a first integral of (1.3). Note that, with x = x1, y = y1, X = x2 and Y = y2, I(x, y,X, Y )
coincides with (2.5), i.e. I comes from the radial symmetry, as it could be expected.

Applying again Theorem 3.1 to (2.17) with the first integral I(x, y,X, Y ) and using (2.20), we
obtain the following bounded solutions of the adjoint variational system on (−∞, 0] and [0,∞)
respectively:

∇I(γ−(t), γ̇−(t)) =

(
ρ̇0(t−(a,b) − t)

( v−
−u−

)
ρ0(t−(a,b) − t)

( v−
−u−

)) , ∇I(γ+(t), γ̇+(t)) =

(
−ρ̇0(t+(a,b) + t)

( v+
−u+

)
ρ0(t+(a,b) + t)

( v+
−u+

) ) .
but the function

w(t) :=

{
∇I(γ−(t), γ̇−(t)) for t ≤ 0
∇I(γ+(t), γ̇+(t)) for t > 0

is not a bounded solution of the variational equation (see [2, eq.(45)]) since it does not satisfy the
impact condition (see the 2nd equation of [2, eq.(45)])

R∗−[R′(γ−(0), γ̇−(0))∗w(0+)− w(0−)] = 0. (3.5)
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Indeed:
R∗−[R′(γ−(0), γ̇−(0))∗w(0+)− w(0−)]

= (0, 0, 2 sinβ(a cosβ + b sinβ), 2 sinβ(b cosβ − a sinβ))
∗ 6= 0.

On the other hand, it is true that R∗−[R′(γ−(0), γ̇−(0))∗ψ(0+) − ψ(0−)] = 0 as we already know.
Thus to apply Theorem 3.1 the knowledge of a first integral it is not enough to obtain a solution
w(t) of the adjoint variational equation as given in the 1th and 3rd equations of [2, eq.(45)], but one
also has to check weather w(t) satisfies the impact condition (3.5) presented by the 2nd equation
of [2, eq.(45)]).

4 Chaotic behavior

In this Section we perturb equation (1.3), or equivalently (2.17), and construct the corresponding
Melnikov function associated to the chaotic behavior of the perturbed system. We construct such
a perturbation by allowing the boundary of Ω to oscillate around the equilibrium. However to fit
into the framework of this paper we need that the perturbation does not act when the particle
runs from the first hitting line (y = 0) to the second (y = x tanβ). We may obtain such a situation
endowing the line y = 0 with a switcher interrupting the boundary movement when the particle
hits it and another switch restoring the boundary movement immediately before the time when
the particle hits the line y = x tanβ. Another kind of perturbations fitting into this framework
may be obtained by taking a steel particle and letting the gravity acceleration g vary slowly by the
effect of a electromagnetic field. Again we need two switchers near the impact boundary: the first
(near the line y = 0) stopping the electromagnetic field and the second restoring it immediately
before the particle hits the line y = x tanβ. If these conditions are satisfied we may neglect the
part of the trajectory from y = 0 to y = x tanβ and assume that the impact manifold varies with
time as follows:

I = {(y1 − εp(t))(y1 − x1 tanβ − εp(t)) = 0}.

where p(t) is a periodic (or almost periodic) C4-function.

y=0

y= p(t)e

y=x tanB

y=x tanB p(t)

O

+e

Figure 4: The billiard with a moving boundary

Remark 4.1. Suppose a solution hits the line y = 0 at a point x0 near the homoclinic solution with
speed (ẋ0, ẏ0). Then it is reflected to the solution starting from (x0, 0) with speed (ẋ0,−ẏ0). Since
this solution satisfies ẍ = ÿ = 0 we have:

x(t) = x0 + tẋ0, y(t) = −tẏ0.

So the reflected solution hits the line y = x tanβ at the time t such that

−tẏ0 = (x0 + tẋ0) tanβ ⇔ t = − x0

ẋ0 + ẏ0
tan β

.
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So, in our framework, we essentially assume that the perturbation (or boundary of the billiard)
stops for a time duration given by − x0

ẋ0+
ẏ0

tan β

before starting again, where x0 is the point of the x

axis hit by the ball ẋ0, ẏ0 is the speed of the ball at the hitting time.

Changing y1(t) and y2(t) with y1 − εp(t) and y2 − εṗ(t) respectively we obtain the system,
instead of (2.17):

ẋ1 = x2

ẏ1 = y2

ẋ2 = λ(x1, y1 + εp(t), x2, y2 + εṗ(t))fx(x1, y1 + εp(t))
ẏ2 = λ(x1, y1 + εp(t), x2, y2 + εṗ(t))fy(x1, y1 + εp(t))− εp̈(t)

(4.1)

that we write as:

ẋ1 = x2

ẏ1 = y2

ẋ2 = λ(x1, y1, x2, y2)fx(x1, y1) + εh1(t, x1, y1, x2, y2, ε)
ẏ2 = λ(x1, y1, x2, y2)fy(x1, y1) + εh2(t, x1, y1, x2, y2, ε)− εp̈(t)

(4.2)

This change of variables has the effect that the domain Ω does not change and it is as in the
previous Section: Ω = {(x1, x2, y1, y2) | y1(y1 − x1 tanβ) > 0}. So the perturbed impact equation
is (4.2) together with the same impact conditions as the unperturbed system:

y1(t∗−) = 0⇒ (x1(t∗+), y1(t∗+), x2(t∗+), y2(t∗+)) = R(x1(t∗−), 0, x2(t∗−), y2(t∗−)).

Let z = (x1, y1, x2, y2), ζ(t) = (0, p(t), 0, ṗ(t)) and

F (z) =


x2

y2

λ(z)fx(x1, y1)
λ(z)fy(x1, y1)


Taking z + εζ(t) = (x1, y1 + εp(t), x2, y2 + εṗ(t)) we obtain

F (z + εζ(t))− εζ̇(t) =


x2

y2 + εṗ(t)
λ(z + εζ(t))fx(x1, y1 + εp(t))
λ(z + εζ(t))fy(x1, y1 + εp(t))

− ε


0
ṗ(t)

0
p̈(t)


So that our perturbed system reads

ż = F (z + εζ(t))− εζ̇(t) (4.3)

that we write as

ż = F (z) + ε


0
0

h1(t, z, ε)
h2(t, z, ε)


Note 

0
0

h1(t, γ±(t), γ̇±(t), 0)
h2(t, γ±(t), γ̇±(t), 0)

 = F ′(γ±(t), γ̇±(t))ζ(t)− ζ̇(t).
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The Melnikov function associated to the perturbed problem (4.3) is then (see (3.4))

M(α) :=

∫ ∞
0

ψ∗+(t)
(
F ′(γ+(t), γ̇+(t))ζ(t+ α)− ζ̇(t+ α)

)
dt

+

∫ 0

−∞
ψ∗−(t)

(
F ′(γ−(t), γ̇−(t))ζ(t+ α)− ζ̇(t+ α)

)
dt =∫ ∞

0

ψ∗+(t)F ′(γ+(t), γ̇+(t))ζ(t+ α)dt−
∫ ∞

0

ψ∗+(t)ζ̇(t+ α)dt

+

∫ 0

−∞
ψ∗−(t)F ′(γ−(t), γ̇−(t))ζ(t+ α)dt−

∫ 0

−∞
ψ∗−(t)ζ̇(t+ α)dt =∫ ∞

0

(F ′(γ+(t), γ̇+(t))ψ+(t))
∗
ζ(t+ α)dt−

∫ ∞
0

ψ∗+(t)ζ̇(t+ α)dt

+

∫ 0

−∞
(F ′(γ−(t), γ̇−(t))ψ−(t))

∗
ζ(t+ α)dt−

∫ 0

−∞
ψ∗−(t)ζ̇(t+ α)dt =

−
∫ ∞

0

ψ̇∗+(t)ζ(t+ α)dt−
∫ ∞

0

ψ∗+(t)ζ̇(t+ α)dt−
∫ 0

−∞
ψ̇∗−(t)ζ(t+ α)dt−

∫ 0

−∞
ψ∗−(t)ζ̇(t+ α)dt =

= −
∫ ∞

0

d

dt

[
ψ∗+(t)ζ(t+ α)

]
dt−

∫ 0

−∞

d

dt

[
ψ∗−(t)ζ(t+ α)

]
dt

= (ψ+(0)− ψ−(0))
∗
ζ(α) = (v+ − v−)ṗ(α) =

2a cosβṗ(α)√
a2 + b2

.

As a consequenceM(α) has a simple zero at some α if and only if p(α) has a non degenerate max
or min. So using [2, Theorem 4.2], we conclude with the following

Theorem 4.2. Assume that F (ρ) is a C5 function whose support is contained in the interval [0, r2
0]

such that B((a, b), r0) ⊂
◦
Ω and such that F ′(0) < 0 and p(t) is an almost periodic C4 function with

a non degenerate max or min. Then there exists ε0 > 0 such that for |ε| < ε0 equation (4.1)
behaves chaotically in a suitable neighborhood of the impact homoclinic orbit (γ(t), γ̇(t)).

As a second example we consider the case of the periodically perturbed gravity g. So we assume
g is changed with g+ εp(t) and p(t) is a C2, T−periodic, function. Then, emphasizing dependence
on g the perturbed system is:

ẋ1 = x2

ẏ1 = y2

ẋ2 = λ(x1, y1, x2, y2, g + εp(t))fx(x1, y1)
ẏ2 = λ(x1, y1, x2, y2, g + εp(t))fy(x1, y1).

(4.4)

So the perturbation is given by:

ε−1[λ(x1, y1, x2, y2, g + εp(t+ α))− λ(x1, y1, x2, y2, g)]


0
0

fx(x1, y1)
fy(x1, y1)


and its limit as ε→ 0 evaluated at (γ(t), γ̇(t)) is:

∂λ

∂g
(γ±(t), γ̇±(t), g)p(t+ α)


0
0

fx(γ±(t))
fy(γ±(t))

 = − 1

1 + ‖∇f(γ±(t))‖2

(
0

∇f(γ±(t))

)
p(t+ α)

Now: 〈(
−γ̈±(t)
γ̇±(t)

)
,

(
0

∇f(γ±(t))

)〉
= 〈γ̇±(t),∇f(γ±(t))〉 =

d

dt
f(γ±(t)).
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So:∫ ∞
0

ψ∗(t)
−1

1 + ‖∇f(γ+(t))‖2

(
0

∇f(γ+(t))

)
p(t+ α)dt =

−1√
2gF (0)

∫ ∞
0

p(t+ α)
d

dt
f(γ+(t))dt

=
1√

2gF (0)

(
p(α)[f(γ+(0))− f(a, b)] +

∫ ∞
0

[f(γ+(t))− f(a, b)]ṗ(t+ α)dt

)
and similarly:∫ 0

−∞
ψ∗(t)

−1

1 + ‖∇f(γ−(t))‖2

(
0

∇f(γ−(t))

)
p(t+ α)dt

=
1√

2gF (0)

(
−p(α)[f(γ−(0))− f(a, b)] +

∫ 0

−∞
[f(γ−(t))− f(a, b)]ṗ(t+ α)dt

)
.

Note f(a, b) = F (0). Since the support of f(x, y) is contained in the ball (x− a)2 + (y − b)2 ≤ r2
0

and γ±(0) do not belong to this ball we get:

M(α) =
1√

2gF (0)

∫ ∞
−∞

(f(γ(t))− f(a, b))ṗ(t+ α)dt =
1√

2gF (0)
lim

N3k→∞

∫ kT

−kT
f(γ(t))ṗ(t+ α)dt.

Then we see that ∫ T

−T
M(α)dα = 0

so that if M(α) 6≡ 0 the equation M(α) = 0 must have a solution that generically is simple. As a
consequence, using again [2, Theorem 4.2], we get the following result.

Theorem 4.3. Assume that F (ρ) is a C5 function whose support is contained in the interval [0, r2
0]

such that B((a, b), r0) ⊂
◦
Ω and such that F ′(0) < 0. Then, given any p(t) in a open dense subset

of the space of C2, T−periodic functions, there exists ε0 > 0 such that for |ε| < ε0 equation (4.4)
behaves chaotically in a suitable neighborhood of the impact homoclinic orbit (γ(t), γ̇(t)).

We continue with Example 1.1. To allow more generality we take: a = cos θ, b = sin θ and
β = 2θ with θ ∈

(
0, π4

)
. Then condition (2.13) reads r0 < min

{
2 sin2 θ, sin θ

}
, so that we take

r0 = sin2 θ. Moreover, we derive t±a,b = ta,b = r0−tan θ√
2F (0)g

< 0 and thus ρ+(t) = ρ−(−t). Recall that

ρ+(t) = ρ0(t+(a,b) + t) and ρ−(t) = ρ0(t−(a,b) − t).

Hence we arrive at

M(α) =
1√

2gF (0)

(∫ 0

−∞
(F (ρ−(t))− F (0))ṗ(t+ α)dt+

∫ ∞
0

(F (ρ+(t))− F (0))ṗ(t+ α)dt

)
=

1√
2gF (0)

∫ ∞
0

(
F (ρ+(t)2)− F (0)

)
(ṗ(t+ α) + ṗ(−t+ α)) dt.

So if p(t) is even then M(0) = 0 and

M′(0) =

√
2√

gF (0)

∫ ∞
0

(
F (ρ+(t)2)− F (0)

)
p̈(t)dt

=

√
2√

gF (0)

(
− F (0)ṗ(−ta,b) +

∫ ∞
−ta,b

(
F (ρ+(t)2)− F (0)

)
p̈(t)dt

)
=

√
2√

gF (0)

(
− F (0)ṗ(−ta,b) +

∫ ∞
0

(
F (ρ0(t)2)− F (0)

)
p̈(t− ta,b)dt

)
.
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Note ρ0(t) is determined by
ρ̇0 = −G(ρ2

0)ρ0, ρ0(0) = r0

with

G(r) :=

{ √
2g(F (0)−F (r))
r(1+4rF ′(r)2) for r > 0,√
−2gF ′(0) for r = 0.

and 0 < ρ0(t) < r0 for t > 0. Set

Ḡ := max
r∈[0,r20 ]

G(r), ḡ := min
r∈[0,r20 ]

G(r),

K̄ := sup
r∈(0,r20 ]

F (0)− F (r)

r
> 0, k̄ := inf

r∈(0,r20 ]

F (0)− F (r)

r
> 0

(recall that F ′(0) < 0). Then clearly r0 e−Ḡt ≤ ρ0(t) ≤ r0 e−ḡt for all t ≥ 0. Now assume

p̈(−ta,b) > 0, (4.5)

and take the smallest t0 > 0 such that p̈(t − ta,b) > 0 for any t ∈ [0, t0) and p̈(t0 − ta,b) = 0.

Note such t0 > 0 exists since
∫ T

0
p̈(t − ta,b)dt = 0. Next, since k̄r ≤ F (0) − F (r) ≤ K̄r, we get

k̄ρ0(t)2 ≤ F (0)− F (ρ0(t)2) ≤ K̄ρ0(t)2 and then∫ ∞
0

(F (0)− F (ρ0(t)2))p̈(t− ta,b)dt ≥ k̄
∫ t0

0

ρ0(t)2p̈(t− ta,b)dt− K̄
∫ ∞
t0

ρ0(t)2|p̈(t− ta,b)|dt

≥ r2
0k̄

∫ t0

0

e−2Ḡt p̈(t− ta,b)dt− r2
0K̄

∫ ∞
t0

e−2ḡt |p̈(t− ta,b)|dt

Then it holds

M′(0) ≤ −
√

2√
gF (0)

(
F (0)ṗ(−ta,b) + r2

0k̄

∫ t0

0

e−2Ḡt p̈(t− ta,b)dt− r2
0K̄

∫ ∞
t0

e−2ḡt |p̈(t− ta,b)|dt

)
.

Hence, if in addition it holds

F (0)ṗ(−ta,b) + r2
0k̄

∫ t0

0

e−2Ḡt p̈(t− ta,b)dt− r2
0K̄

∫ ∞
t0

e−2ḡt |p̈(t− ta,b)|dt > 0, (4.6)

we can apply Theorem 4.3 and conclude that equation(4.4) behaves chaotically. For Example 1.1,
we compute

ḡ
.
= 4.2335, Ḡ

.
= 21.5527, k̄ = 16, K̄ = 96.

Recall ta,b
.
= −0.0739158. Finally we take p(t) = − cos t. Then ṗ(t) = sin t and p̈(t) = cos t. Next,

p̈(−ta,b)
.
= cos 0.0739158

.
= 0.997269 > 0, so (4.5) holds. Clearly t0 = π

2 + ta,b
.
= 1.49688. Then we

can check that

F (0)ṗ(−ta,b) + r2
0k̄

∫ t0

0

e−2Ḡt p̈(t− ta,b)dt− r2
0K̄

∫ ∞
t0

e−2ḡt |p̈(t− ta,b)|dt
.
= 0.0969298 > 0

so assumption (4.6) is verified as well.

5 Using symmetries to obtain the Melnikov function

In this Section we suggest a direct way to obtain the function ψ(t) which is not based of the
existence of first integrals. This approach is based on a careful analysis of the variational system of
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the first order equations associated to equation (1.3) along the solution (γ±(t), γ̇±(t)). It is proved
that this variational equation satisfies symmetry conditions that allow us to reduce its order from
the 4th to the 2nd. Obviously this methods applies any times the 4th order variational equation
has the form (5.1) and the coefficient matrix satisfies suitable symmetry conditions (see equations
(5.2) and (5.3)).

From (2.3) we know that

λ(x1, y1, x2, y2) = λ(ρ2, η2, θ2) := −
g + 2F ′

(
ρ2
) (
ρ2θ2 + η2

)
+ 4ρ2η2F ′′

(
ρ2
)

1 + 4ρ2F ′ (ρ2)
2

with ρ2 = (x1 − a)2 + (y1 − b)2, η2 = x2
2 + y2

2 and ρ2θ = y2(x1 − a)− x2(y1 − b). Then:

ρ∇ρ =

( x1−a
y1−b

0
0

)
, η∇η =

(
0
0
x2
y2

)
, 2θρ∇ρ+ ρ2∇θ =

( y2
−x2

−(y1−b)
x1−a

)
(note that the derivatives are taken with respect to all variables (x1, y1, x2, y2), we omitted the
argument (x1, y1, x2, y2) for simplicity). So

ρ2∇θ =

( y2
−x2

−(y1−b)
x1−a

)
− 2θ

( x1−a
y1−b

0
0

)
.

Now:
∇λ = 2D1λ(ρ2, η2, θ2) · ρ∇ρ+ 2D2λ(ρ2, η2, θ2) · η∇η + 2D3λ(ρ2, η2, θ2) · θ∇θ

but on the homoclinic orbit (x1, y1, x2, y2) = (γ+(t), γ̇+(t)) we have θ = ϕ̇ = 0 and

x1 − a
ρ0(t+a,b + t)

= u+,
y1 − b

ρ0(t+a,b + t)
= v+,

x2

ρ̇0(t+a,b + t)
= u+,

y2

ρ̇0(t+a,b + t)
= v+

so:

∇ρ =

( u+
v+
0
0

)
η∇η = ρ̇0(t+a,b + t)

(
0
0
u+
v+

)
and then:

∇λ(γ+(t), γ̇+(t), 0) = 2D1λ
(
ρ2

0(t+a,b + t), ρ̇2
0(t+a,b + t), 0

)
ρ0(t+a,b + t)

( u+
v+
0
0

)
+2D2λ

(
ρ2

0(t+a,b + t), ρ̇2
0(t+a,b + t), 0

)
ρ̇0(t+a,b + t)

(
0
0
u+
v+

)
.

Similarly on (γ−(t), γ̇−(t)) we have θ = ϕ̇ = 0 and

x1 − a
ρ0(t−a,b − t)

= u−,
y1 − b

ρ0(t−a,b − t)
= v−,

x2

ρ̇0(t−a,b − t)
= −u−,

y2

ρ̇0(t−a,b − t)
= −v−

and then:

λ′(γ−(t), γ̇−(t), 0)∗ = 2D1λ
(
ρ2

0(t−a,b − t), ρ̇2
0(t−a,b − t), 0

)
ρ0(t−a,b − t)

( u−
v−
0
0

)
−2D2λ

(
ρ2

0(t−a,b − t), ρ̇2
0(t−a,b − t), 0

)
ρ̇0(t−a,b − t)

(
0
0
u−
v−

)
.

We set, for simplicity,

λ̂(t) = λ
(
ρ2

0(t), ρ̇2
0(t), 0

)
λ̂1(t) = D1λ

(
ρ2

0(t), ρ̇2
0(t), 0

)
λ̂2(t) = D2λ

(
ρ2

0(t), ρ̇2
0(t), 0

)
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and
λ̂±(t) = λ̂(t±a,b ± t)
λ̂±1 (t) = λ̂1(t±a,b ± t)
λ̂±2 (t) = λ̂2(t±a,b ± t).

Then the linear variational system along (γ±(t), γ̇±(t)) is (+ is for t ≥ 0 and − for t < 0)
ẋ1

ẏ1

ẋ2

ẏ2

 =

(
0 I

C±(t) D±(t)

)
x1

y1

x2

y2

 (5.1)

where

D±(t) = ±2λ̂2(t±a,b ± t)ρ̇0(t±a,b ± t)
(
fx(γ±(t))u± fx(γ±(t))v±
fy(γ±(t))u± fy(γ±(t))v±

)
= ±2λ̂2(t±a,b ± t)ρ̇0(t±a,b ± t)f ′(γ±(t))∗(u±, v±)

and

C±(t) = 2λ̂1(t±a,b ± t)ρ0(t±a,b ± t)
(
fx(γ±(t))u± fx(γ±(t))v±
fy(γ±(t))u± fy(γ±(t))v±

)
+ λ̂(t±a,b ± t)Hf (γ±(t))

= 2λ̂1(t±a,b ± t)ρ0(t±a,b ± t)f ′(γ±(t))∗(u±, v±) + λ̂(t±a,b ± t)Hf (γ±(t)).

From (2.2) we know that

f ′(γ±(t))∗ = 2ρ0(t±a,b ± t)F
′(ρ2

0(t±a,b ± t))
( u±
v±

)
and hence:

D±(t) = ±4λ̂2(t±a,b ± t)ρ0(t±a,b ± t))ρ̇0(t±a,b ± t))F ′(ρ2
0(t±a,b ± t))

(
u2
±, u±v±

u±v± v2
±

)
= 2λ̂2(t±a,b ± t)

d
dt [F (ρ2

0(t±a,b ± t))]
(
u2
±, u±v±

u±v± v2
±

)
.

As a consequence

D±(t) = D±(t)∗ and similarly C±(t) = C±(t)∗. (5.2)

So the adjoint system to (5.1) is:
ẋ1

ẏ1

ẋ2

ẏ2

 = −
(

0 C±(t)
I D±(t)

)
x1

y1

x2

y2

 .

with the impact condition (3.5) (and w = (x1, y1, x2, y2)∗).
For sake of simplicity we set:

M± =

(
u2
± u±v±

u±v± v2
±

)
d(t) = λ̂2(t) ddt [F (ρ2

0(t))]

c(t) = 4λ̂1(t)ρ2
0(t)F ′(ρ2

0(t))
d±(t) = ±2d(t±a,b ± t)
c±(t) = c(t±a,b ± t)
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then
D±(t) = ±2d(t±a,b ± t)M± = d±(t)M±

C±(t) = c(t±a,b ± t)M± + λ̂(t±a,b ± t)Hf (γ±(t)) = c±(t)M± + λ̂±(t)Hf (γ±(t)).

Let us write (
ψ±1 (t)
ψ±2 (t)

)
= ψ(t) = X−1

± (t)∗
( 0

0
±u±
±v±

)
.

Then 
ψ̇±1 (t) = −C±(t)ψ±2 (t)

ψ̇±2 (t) = −d±(t)M±ψ
±
2 (t)− ψ±1 (t)

ψ±1 (0) = 0, ψ±2 (0) = ±
( u±
v±

)
.

Suppose, for the moment, that C±(t) and M± commute, that is

C±(t)M± = M±C±(t), (5.3)

then we see that (
M±ψ

±
1 (t)

M±ψ
±
2 (t)

)
satisfies the same equation and hence:

ψ±1 (t) = M±ψ
±
1 (t)

ψ±2 (t) = M±ψ
±
2 (t)

or else:
〈ψ±1 (t),

( v±
−u±

)
〉 = 〈ψ±2 (t),

( v±
−u±

)
〉 = 0.

This means that to determine ψ(t) we do not need to study a 4-dimensional equation but a 2-
dimensional equation that is the equation satisfied by the functions

ξ±1 (t) := 〈ψ±1 (t),
( u±
v±

)
〉; ξ±2 (t) := 〈ψ±2 (t),

( u±
v±

)
〉.

From the expression of C±(t) we easily see that C±(t)M± = M±C±(t) is equivalent to

Hf (γ±(t))M± = M±Hf (γ±(t))

But from (2.2) we derive:

Hf (γ±(t)) = 2F ′(ρ2)I + 4F ′′(ρ2)ρ2

(
u2
± u±v±

u±v± v2
±

)
= 2F ′(ρ2)I + 4F ′′(ρ2)ρ2M±

(with ρ = ρ0(t±a,b ± t)) and then Hf (γ±(t))M± = M±Hf (γ±(t)) easily follows. Note that, being

〈ψ±1,2(t),
( v±
−u±

)
〉 = 0

we get, because of the orthonormality of the set {(u±, v±), (v±,−u±)}:

ψ±1,2(t) = ξ±1,2(t)
( u±
v±

)
.

So, using also M± = M∗± and M±
( u±
v±

)
=
( u±
v±

)
: we see that (ξ1(t), ξ2(t)) satisfies the system in

R2: 
ξ̇±1 (t) = −〈C±(t)

( u±
v±

)
,
( u±
v±

)
〉ξ±2 (t)

ξ̇±2 (t) = −ξ±1 (t)− d±(t)ξ±2 (t)
ξ±1 (0) = 0, ξ±2 (0) = ±1.

(5.4)
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Since
〈C±(t)

( u±
v±

)
,
( u±
v±

)
= c±(t) + λ̂±(t)〈Hf (γ±(t))

( u±
v±

)
,
( u±
v±

)
〉

we can write (5.4) as
ξ̇±1 (t) = −

{
c±(t) + λ̂±(t)〈Hf (γ±(t))

( u±
v±

)
,
( u±
v±

)
〉
}
ξ±2 (t)

ξ̇±2 (t) = −ξ±1 (t)− d±(t)ξ±2 (t)
ξ±1 (0) = 0, ξ±2 (0) = ±1.

(5.5)

or, 
ξ̇±1 (t) = −

{
c±(t) + 2λ̂±(t)

[
F ′(ρ2

0(t±a,b ± t)) + 2F ′′(ρ2
0(t±a,b ± t))ρ2

0(t±a,b ± t)
]}

ξ±2 (t)

ξ̇±2 (t) = −ξ±1 (t)− d±(t)ξ±2 (t)
ξ±1 (0) = 0, ξ±2 (0) = ±1.

The equation adjoint to (5.5) (without initial conditions) is{
η̇±1 (t) = η2(t)

η̇2(t) =
{
c±(t) + λ̂±(t)〈Hf (γ±(t))

( u±
v±

)
,
( u±
v±

)
〉
}
η±1 (t) + d±(t)η±2 (t).

(5.6)

Since (γ̇±(t), γ̈±(t)) is a solution of (5.1) satisfying the initial condition

(x1(0), y1(0), x2(0), y2(0)) = (γ̇±(0), γ̈±(0)) = ∓
√

2gF (0)(u±, v±, 0, 0)

we see that
(
〈γ̇±(t),

( u±
v±

)
〉, 〈γ̈±(t),

( u±
v±

)
〉
)

satisfies:{
η̇1(t) = η2(t)

η̇2(t) = c±(t)η1(t) + λ̂±(t)〈Hf (γ±(t))γ̇±(t),
( u±
v±

)
〉+ d±(t)η2(t)

but, since
γ̇±(t) = 〈γ̇±(t),

( u±
v±

)
〉
( u±
v±

)
+ 〈γ̇±(t),

( v±
−u±

)
〉
( v±
−u±

)
and

〈Hf (γ±(t))
( v±
−u±

)
,
( u±
v±

)
〉 = 0

we see that
(
〈γ̇±(t),

( u±
v±

)
〉, 〈γ̈±(t),

( u±
v±

)
〉
)

satisfies (5.6) with the initial conditions:

η±1 (0) = ∓
√

2gF (0) η±2 (0) = 0.

As a consequence the function:

1√
2gF (0)

(
〈γ̈±(t),

( u±
v±

)
〉

−〈γ̇±(t),
( u±
v±

)
〉

)
e−

∫ t
0
d±(s)ds

satisfies (5.5) (initial condition included). So:(
ξ±1 (t)
ξ±2 (t)

)
=

1√
2gF (0)

e−
∫ t
0
d±(s)ds

(
〈γ̈±(t),

( u±
v±

)
〉

−〈γ̇±(t),
( u±
v±

)
〉

)
and then:

ψ(t) =

(
ξ±1 (t)

( u±
v±

)
ξ±2 (t)

( u±
v±

)) =
1√

2gF (0)
e−

∫ t
0
d±(s)ds

(
〈γ̈±(t),

( u±
v±

)
〉
( u±
v±

)
−〈γ̇±(t),

( u±
v±

)
〉
( u±
v±

)) .
From (2.20) we see that

γ̇±(t) = ±ρ̇0(t± t±a,b)
( u±
v±

)
, γ̈±(t) = ρ̈0(t± t±a,b)

( u±
v±

)
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and hence:

ψ(t) =
1√

2gF (0)
e−

∫ t
0
d±(s)ds

(
γ̈±(t)
−γ̇±(t)

)
.

Next we have

λ̂2(t) = −2
F ′(ρ0(t)2) + 2ρ0(t)2F ′′(ρ0(t)2)

1 + 4ρ0(t)2F ′(ρ0(t)2)2

and

d(t) = λ̂2(t)
d

dt
F (ρ0(t)2) = −

4ρ0(t)ρ′0(t)F ′(ρ0(t)2)
[
F ′(ρ0(t)2) + 2ρ0(t)2F ′′(ρ0(t)2)

]
1 + 4ρ0(t)2F ′(ρ0(t)2)2

.

Hence

d±(t) = ±2d(t±a,b ± t) = −
8ρ±(t)ρ′±(t)F ′(ρ±(t)2)

[
F ′(ρ±(t)2) + 2ρ±(t)2F ′′(ρ±(t)2)

]
1 + 4ρ±(t)2F ′(ρ±(t)2)2

= − d

dt
ln[1 + 4ρ±(t)2F ′(ρ±(t)2)2]

for ρ±(t) = ρ0(t±(a,b) ± t). This gives

e−
∫ t
0
d±(s)ds = 1 + 4ρ±(t)2F ′(ρ±(t)2)2

and hence, using also the equality 1 + 4ρ±(t)2F ′(ρ±(t)2)2 = 1 + ‖∇f(γ±(t))‖2:

ψ(t) =
1 + ‖f ′(γ±(t))‖2√

2gF (0)

(
γ̈±(t)
−γ̇±(t)

)
that coincides with (3.3).

6 Conclusions

The main purpose of this paper is to introduce a new class of relatively simple chaotic impact
system consisting in non–flat billiards. Thus we have studied the behavior of a particle of unitary
mass moving on a cartesian surface z = f(x, y) in R3 and (x, y) belongs to a convex domain Ω̄ with
piecewise smooth boundary. The particle is subject to the gravity field and is reflected with respect
to the normal axis when it hits the (smooth part of the) boundary that, in turns is subject to a
small amplitude periodic (or - more generally - almost periodic) force. Due to the complexity of the
problem we have considered radially symmetric functions with compact support in the interior of
Ω. In such conditions we have proved the existence of a piecewise smooth homoclinic orbit for the
unperturbed problem (when the boundary of Ω is frozen) consisting of three smooth parts. Since
the time spent by the solutions near the middle part of the homoclinic orbit is almost the same, we
have replaced the equation with an impact equation assuming that when a solution hits ∂Ω with
a certain speed it is immediately sent to another point of ∂Ω with another speed. This reflection
law has been explicitly computed by studying the flow near the middle part of the homoclinic
orbit. Then we used a result in [2] concerning chaotic behavior of impact system to construct the
Melnikov function for such an impact dynamical system. To clarify the result we applied it to
two concrete situations, the first when we have a moving boundary and the second (to show the
wider applicability of the result) when the gravity varies periodically. We have seen that chaotic
behavior of the dynamical system appears generically in such situations and we have also studied
an example with a concrete function f(x, y).
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