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Michal Fečkan∗- Michal.Feckan@fmph.uniba.sk;

∗Corresponding author

Abstract

We approximate impact systems in arbitrary finite dimensions with fast-slow dynam-
ics represented by regular ODE on one side of the impact manifold and singular ODE
on the other. Lyapunov-Schmidt method leading to Poincaré-Melnikov function is
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as illustrations of abstract theory.
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1 Introduction
Non-smooth differential equations when the vector field is only piecewise smooth,
occur in various situations: in mechanical systems with dry frictions or with
impacts, in control theory, electronics, economics, medicine and biology (see
[3–5, 11–13] for more references). One way of studying non-smooth systems is
a regularization process consisting on approximation of the discontinuous vec-
tor field by a one-parametric family of smooth vector fields, which is called a
regularization of the discontinuous one. The main problem then is to preserve
certain dynamical properties of the original one to the regularized system. Ac-
cording to our knowledge, the regularization method has been mostly used to
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differential equations with non-smooth nonlinearities, like dry friction nonlinear-
ity (see [1] and a survey paper [16]). As it is shown in [1,16], the regularization
process is closely connected to a geometric singular perturbation theory [6, 10].
On the other hand, it is argued in [9] that a harmonic oscillator with a jumping
non-linearity nonlinearity with the force field nearly infinite in one side is a bet-
ter model for describing the bouncing ball, rather then its limit version for an
impact oscillator. This approach is used also in [14] when an impact oscillator
is approximated by a one-parametric family of singularly perturbed differential
equations, but as discussed in [14], the geometric singular perturbation theory
does not apply.

In this paper, we continue in a spirit of [14] as follows. Let Ω ⊂ R
n be

an open subset and G : Ω → R a C2-function, such that G′(x) �= 0 for any
x ∈ S := {x ∈ Ω | G(x) = 0} ⊂ Ω. Then S is a smooth hyper-surface of Ω that
we call impact manifold, (or hyper-surfacehypersurface). We set Ω± = {x ∈ Ω |
±G(x) > 0} and consider the following regular-singular perturbed system:

{
εẋ = f+(x) + εg+(t, x, ε) for x ∈ Ω+

ẋ = f−(x) + εg−(t, x, ε) for x ∈ Ω−
(1.1)

for ε > 0 small. We assume that the system

{
ẋ = f+(x) for x ∈ Ω+

ẋ = f−(x) for x ∈ Ω−
(1.2)

has a continuous periodic solution q(t) crossing transversally the impact mani-
fold S, given by :

q(t) =

{
q−(t) ∈ Ω− for −T 0

− < t < 0
q+(t) ∈ Ω+ for 0 < t < T 0

+

and q−(0) = q+(0) ∈ S, q−(−T 0
−) = q+(T

0
+) ∈ S. By transversal crossing, we

mean that
G′(q(±T 0

±))q̇±(±T 0
±) < 0 < G′(q(0))q̇±(0).

We set Tε := T 0
− + εT 0

+ and assume that g±(t, x, ε) are Tε−periodic in t.
Transversal crossing implies that (1.2) has a family of continuous solutions

q(t, α), α ∈ (an open neighbourhood I0 of 0 ∈) Rn−1 crossing transversally the
impact manifold S, given by :

q(t, α) =

{
q−(t, α) ∈ Ω− for −T−(α) < t < 0
q+(t, α) ∈ Ω+ for 0 < t < T+(α)

where q−(0, α) = q+(0, α) ∈ S, q−(−T−(α), α), q+(T+(α), α) ∈ S, and q±(t, 0) =
q±(t) and T±(0) = T 0

±. Moreover, T±(α) is C
2 in α, and the maps α �→ q(0, α)

and α �→ q(±T±(α), α) give smooth (C2) parameterizations parametrizations of
the manifold S in small neighbourhoods neighborhoods U0 of q(0) and U± of
q(T 0

+) = q(−T 0
−). Then the map R : U0∩S → U+∩S, q(0, α) �→ q+(T+(α), α) is

C2−smooth. In this paper, we study the problem of existence of a Tε−periodic
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solution of the singular problem (1.1) in a neighbourhood neighborhood of the
set

{q−(t) | t ∈ [−T 0
−, 0]} ∪ {q+(t) | t ∈ [0, T 0

+]}.
As a matter of fact, in the time interval [0, εT 0

+], resp. [−T 0
−, 0], the periodic

solutions will stay close to q+(ε
−1t), resp. to q−(t), and hence it will pass

from the point of S near q(0) to the point of S near q+(T
0
+) in a very short

time (of the size of εT 0
+). So, we may say that the behaviour behavior of the

periodic solutions of (1.1) in the interval [−T 0
−, εT

0
+] is quite well simulated by

the solution of the perturbed impact system

ẋ = f−(x)
R(q−(0, α)) = q+(T+(α), α).

(1.3)

It is now clear that our study has been mostly motivated by the paper [14],
where a similar problem on planar perturbed harmonic oscillators is studied.
However arguments in [14] are mainly based on averaging methods whereas, in
this paper, we investigate a general higher-dimensional singular equation such
as (1.1) by using the Lyapunov-Schmidt reduction. We focus on the existence
of periodic solutions and do not check their local asymptotic properties as, for
example, stability or hyperbolicity. This could be also done by following our
approach but we do not go into detail details in this paper.

Our results (see Theorems 3.1 and 5.1) state that if a certain Poincaré-
Melnikov-like function has a simple zero then the above problem has an af-
firmative answer. The proof of this fact is accomplished in several steps. In
Section 2, we show, for any α in a neighbourhood neighborhood of α = 0, the
existence of a unique continuous solution x(t) = x(t, α, ε) of (1.1) near the set
{q(t, α) | t ∈ [−T 0

−, T
0
+]} which is defined in [−T−+τ, εT++τ ], T± 	 T 0

± and such
that x(τ) = q(0, α), for some τ , and x(−T− + τ, α, ε), x(εT+ + τ, α, ε) belong to
U±∩S. Moreover, α �→ x(−T−+τ, α, ε) and α �→ x(εT++τ, α, ε) are C2 close to
q±(±T±(α), α) and then α �→ x(−T−+ τ, α, ε) and α �→ x(εT++ τ, α, ε) give C2

parameterizations parametrizations of S in neighbourhoods neighborhoods of
q±(±T−(α), α). Hence, x(−T−+τ, α, ε) �→ x(εT++τ, α, ε) gives a Poincaré-like
map and a (T 0

− + εT 0
+)−periodic solution is found by solving the equations

x(εT+ + τ, α, ε) = x(−T− + τ, α, ε)
T− + εT+ = T 0

− + εT 0
+.

Thus, the bifurcation equation is obtained by putting conditions x(εT++τ, α, ε) =
x(−T−+τ, α, ε), T−+εT+ = T 0

−+εT 0
+ and the fact that the points x(εT++τ, α, ε)

and x(−T− + τ, α, ε) belong to S together. Then, in Section 3, we use the we
use Lyapunov-Schmidt method to prove that the above equations can be solved
for (T−, T+, τ, α) 	 (T 0

−, T
0
+, τ0, 0) as functions of ε > 0 small provided a certain

Poincaré-Melnikov-like function has a simple zero. We will first study the case,
that we call non-degenerate, when

∂

∂α
[q+(T+(α), α)− q−(−T−(α), α)]α=0 w �= 0, ∀w ∈ R

n−1such that T ′
−(0)w = 0.

(1.4)
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Condition (1.4) has a simple geometrical meaning. The impact system (1.3) has
a T 0

−−periodic solution if and only if the following condition holds:

q+(T+(α), α) = q−(−T−(α), α), T−(α) = T 0
−. (1.5)

Now, suppose there is a sequence 0 �= αn → 0, as n → ∞ such that (1.5) holds.

Possibly passing to a subsequence we can suppose that lim
n→∞

αn

|αn|
= w, |w| = 1.

Then, taking the limit in the equalities:

q+(T+(αn), αn)− q−(−T−(αn), αn)

|αn|
= 0,

T−(αn)− T 0
−

|αn|
= 0

we see that condition (1.4) does not hold. Thus, (1.4) implies that, in a
neighbourhood neighborhood of α = 0, there are no other T 0

−−periodic so-
lutions of (1.3) apart from q−(t).

In Section 4, we define the adjoint system to the linearization of the impact
system ⎧⎨

⎩
ẋ = f−(x)
x(0) = q−(0, α), x(−T−(α)) = R(x(0))
G(x(−T−(α))) = 0 −T−(α) ≤ t ≤ 0

(1.6)

along the solution x(t) = q−(t, 0) and relate the Poincaré-Melnikov function
obtained in Section 3 with the solutions of such an adjoint system.

Section 5 is devoted to the extension of the result to the case (that we call
degenerate) where q+(T+(α), α) = q−(−T−(α), α) for any α ∈ I0. We will
see that our results can be easily extended provided one of the following two
conditions hold:

either T ′
−(0) �= 0 or T−(α) = T 0

− for any α ∈ I0.
Section 6 is devoted to the construction of some planar examples, although our
results are given for an arbitrary finite dimension. Finally, Section 7 contains
some technical proofs.

2 The bifurcation equation
We set u+(t, α) = q+

(
ε−1t, α

)
, u−(t, α) = q− (t, α) and

u(t, α) =

{
u−(t, α) for −T−(α) ≤ t < 0
u+(t, α) for 0 ≤ t < εT+(α).

Note that : ⎧⎪⎪⎨
⎪⎪⎩

εu̇+(t, α) = f+(u+(t, α))
u̇−(t, α) = f−(u−(t, α))
u+(0, α) = u−(0, α)
u+(εT+(α), α), u−(−T−(α), α), 0) ∈ S

and that u(t, 0) is a continuous periodic solution, of period T 0
− + εT 0

+, of the
piecewise continuous singular system:{

εẋ = f+(x) for x ∈ Ω+

ẋ = f−(x) for x ∈ Ω−.
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Obviously, u−(t, α) extends to a solution of the following impact system:

{
ẋ = f−(x) for x ∈ Ω−
x(t+) = q+(T+(α), α) when x(t−) = q−(0, α)

that can be written as :{
ẋ = f−(x) for x ∈ Ω−
x(t+) = R(x(t−)) when x(t−) ∈ U0 ∩ S.

Our purpose is to find a Tε−periodic solution x(t, ε) of system (1.1), which
is orbitally close to u(t, α) for some α = α(ε) → 0, as ε → 0+ that is such that

sup
−T 0

−≤t≤εT 0
+

|x(t+ τ(ε), ε)− u(t, α(ε))| → 0 as ε → 0+ (2.1)

for some (τ(ε), α(ε)) → (τ0, 0) as ε → 0. Thus, we may say that, in some sense,
the impact periodic solution u−(t, 0) approximates the periodic solution x(t, ε)
of the singular perturbed equation (1.1).

To this end, we first set x(t + τ) = x+(t) + u+(t, α) in equation εẋ =
f+(x) + εg+(t, x, ε). Then x+(t) satisfies :

εẋ− f ′
+(u+(t, α))x = h+(t, τ, x, α, ε) (2.2)

where :

h+(t, τ, x, α, ε) =
f+(x+ u+(t, α))− f+(u+(t, α))− f ′

+(u+(t, α))x+ εg+(t+ τ, x+ u+(t, α), ε).

Since u+(0, α) describes U0 ∩ S, U0 ∩ S we consider (2.2) with the initial con-
dition x0 = 0. Let X+(t, α) be the fundamental solution of ẋ = f ′

+(q+(t, α))x,
such that X+(0, α) = I. Then X+(ε

−1t, α) is the fundamental solution of
εẋ = f ′

+(u+(t, α))x, with X+(0, α) = I. Let T+ be near T 0
+. By the varia-

tion of constants formula, the solution of (2.2) with the initial condition x0 = 0
satisfies

x+(t) = ε−1

∫ t

0

X+(ε
−1t, α)X−1

+ (ε−1s, α)h(s, τ, x+(s), α, ε)ds.

Thus, we conclude that for ρ > 0 and T+ near T 0
+ equation εẋ = f+(x) +

εg(t, x, ε) has a solution x(t) such that sup0≤t≤εT+
|x(t + τ) − u+(t, α)| < ρ if

and only if the map x(t) �→ x̂(t) given by :

x̂(t) = ε−1

∫ t

0

X+(ε
−1t, α)X−1

+ (ε−1s, α)h(s, τ, x(s), α, ε)ds, (2.3)

has a fixed point whose sup−norm in [0, εT+] is smaller than ρ. To show that
(2.3) has a fixed point of norm less than ρ, we set y(t) := x(εT+t), t ∈ [0, 1] and
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note that x(t) is a fixed point of (2.3) of norm less than ρ, with 0 ≤ t ≤ εT+, if
and only if y(t) is a fixed point of norm less than ρ of the map:

ŷ(t) = T+

∫ t

0

X+(T+t, α)X
−1
+ (T+σ, α)h(εT+σ, τ, y(σ), α, ε)dσ, (2.4)

0 ≤ t ≤ 1. Note that

h+(εT+t, τ, x, α, ε) = f+(x+ q+(tT+, α))− f+(q+(tT+, α))− f ′
+(q+(tT+, α))x

+εg+(εtT+ + τ, x+ q+(tT+, α), ε),

and hence in the fixed-point fixed point equation (2.4), we may also take ε ≤ 0.
Then since (x, T+, α, ε) �→ h+(εT+τ, τ, x, α, ε), 0 ≤ τ ≤ 1 is a C2−map and

|h+(t, τ, x, α, ε)| ≤ Δ(|x|)|x|+Ng|ε|

where

Ng = sup{|g+(t, x̃, ε) | t ∈ R, |x̃| ≤ ρ+ sup
t∈[0,T+(α)],α∈I0

|q+(t, α)|, |ε| ≤ ε0}

Δ(ρ) = sup{|f ′(x+ q+(t, α))− f ′(q+(t, α))| | t ∈ [0, T+(α)], |x| ≤ ρ, α ∈ I0},

the map y(t) �→ ŷ(t) is a C2−contraction on the Banach space of bounded
continuous functions on [0, 1] whose sup−norm is less than or equal to ρ pro-
vided ρ is sufficiently small, T+ is near T 0

+, |ε| is small, α ∈ I0 and τ ∈ R.
Let y+(t, τ, α, T+, ε) be the C2−solution of the fixed point (2.4). We empha-
size the fact that ε may also be non-positivenonpositive. Then x+(t, τ, α, ε) :=
y+(ε

−1T−1
+ t, τ, α, T+, ε) is a fixed point of (2.3) and

x+(εt, τ, α, ε) := y+(T
−1
+ t, τ, α, T+, ε) (2.5)

is C2 in all parameters and t.
Writing T−1

+ t in place of t in (2.4) and using (2.5) we see that

x+(εt, τ, α, ε) =

∫ t

0

X+(t, α)X
−1
+ (s, α)h+(εs, τ, x+(εs, τ, α, ε), α, ε)ds, (2.6)

0 ≤ t ≤ T+. We have, by definition, x+(0, τ, α, ε) + u+(0, α) = u+(0, α) ∈ S
and

x+(εT+, τ, α, ε) + u+(εT+, α) ∈ S

if and only if (recall that u+(εT+, α) = q+(T+, α))

G

(
q+(T+, α) +

∫ T+

0

X+(T+, α)X
−1
+ (s, α)h+(εs, τ, x+(εs, τ, α, ε), α, ε)ds, ε)

)
= 0.

(2.7)
We remark that equation (2.7) has meaning also when ε < 0 but its relevance
for our problem is only when ε > 0.
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As second step we consider the solution of the differential equation on Ω−:

ẋ = f−(x) + εg−(t, x, ε), x(τ) = q(0, α)

which is close to u−(t − τ, α) on −T− + τ ≤ t ≤ τ , T− 	 T 0
−. Let X−(t, α)

be the fundamental solution of the linear system ẋ = f ′
−(u−(t, α))x such that

X−(0, α) = I. Setting x(t+ τ) = x−(t) + u−(t, α) we see that (for t ∈ [−T−, 0])
x−(t) satisfies the equation:

{
ẋ− f ′

−(u−(t, α))x = h−(t, τ, x, α, ε)
x(0) = 0

(2.8)

where

h−(t, τ, x, α, ε) =
f−(x+ u−(t, α))− f−(u−(t, α))− f ′

−(u−(t, α))x+ εg−(t+ τ, x+ u−(t, α), ε).

Again by the variation of constants formula we get the integral formula:

x−(t) =

∫ t

0

X−(t, α)X−(s, α)
−1h−(s, τ, x−(s), α, ε)ds

which, as before, has a unique solution of norm less than a given, small, ρ:
x−(t, τ, α, ε), with −T− ≤ t ≤ 0. At t = −T− the solution of (2.8) takes the
value:

−
∫ 0

−T−

X−(−T−, α)X−(s, α)
−1h−(s, τ, x−(s, α, ε), α, ε)ds.

Now, we want to solve the equation

x−(−T−, τ, α, ε) + u−(−T−, α) = x+(εT+, τ, α, ε) + u+(εT+, α)

that is [again using u+(εT+, α) = q+(T+, α) and u−(−T−, α) = q−(−T−, α)]:

q+(T+, α) +

∫ T+

0

X+(T+, α)X
−1
+ (s, α)h+(εs, τ, x+(εs, τ, α, ε), α, ε)ds

= q−(−T−, α)−
∫ 0

−T−

X−(−T−, α)X−(s, α)
−1h−(s, τ, x−(s, τ, α, ε), α, ε)ds.

(2.9)
Of course, when (2.9) holds, then (2.7) is equivalent to

G

(
q−(−T−, α)−

∫ 0

−T−

X−(−T−, α)X−(s, α)
−1h−(s, τ, x−(s, τ, α, ε), α, ε)ds

)
= 0.

(2.10)
So, our task reduces to solve the system formed by equations (2.9), (2.10) to-
gether with the period equation:

T− + εT+ = T 0
− + εT 0

+
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that is the equation F(T+, T−, τ, α, ε) = 0 where:

F(T+, T−, τ, α, ε) :=⎛
⎜⎜⎜⎝

x−(−T−, τ, α, ε) + q−(−T−, α)− x+(εT+, τ, α, ε)− q+(T+, α)

G

(
q−(−T−, α)−

∫ 0

−T−

X−(−T−, α)X
−1
− (s, α)h−(s, τ, x−(s, τ, α, ε), α, ε), ε)ds

)

T− − T 0
− + ε(T+ − T 0

+)

⎞
⎟⎟⎟⎠ .

According to the smoothness properties of x−(t, τ, α, ε) and x+(εt, τ, α, ε), x+(εt, τ, α, ε)
it results that F(T+, T−, τ, α, ε) is C

2.

3 Solving F(T+, T−, τ, α, ε) = 0
In this section, Section we will give a criterion to solve equation F(T+, T−, τ, α, ε) =
0 for (T+, T−, τ, α) in terms of ε for small ε > 0. We will use a Crandall-Rabino-
witz type result (see also [15, Theorem 4.1]) concerning the existence of a solu-
tion of a nonlinear equation having a manifold of fixed point at a certain value
of a parameter.

Our result is as follows. Consider the linear system

⎧⎪⎨
⎪⎩

ψ∗q̇+(T
0
+, 0) = 0

ψ2 =
[
ψ∗ + ψ1G

′(q(−T 0
−, 0))

]
q̇−(−T 0

−, 0)

ψ∗
[
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
+ ψ1G

′(q(−T 0
−, 0))q̇−(−T 0

−, 0)T
′
−(0) = 0.

(3.1)
We will prove that if (1.4) holds, system (3.1) has a unique solution, up to a
multiplicative constant, and the following result holds:

Theorem 3.1. Assume condition (1.4) holds and let (ψ, ψ1, ψ2) ∈ R
n×R×R be

the unique (up to a multiplicative constant) solution of (3.1). If the Poincaré-
Melnikov function

M(τ) := ψ∗
∫ T 0

+

0

X+(T
0
+, 0)X+(s, 0)

−1g+(τ, u(0, 0), 0)ds

+ψ∗
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1g−(s+ τ, u−(s, 0), 0)ds

+ψ1G
′(q(−T 0

−, 0))

∫ 0

−T 0
−

X−(−T 0
−, 0)X

−1
− (s, 0)g−(s+ τ, q−(s, 0), 0)ds

(3.2)

has a simple zero at τ = τ0, then system (1.1) has a Tε−periodic solution x(t, ε)
satisfying (2.1).

Proof. To start with, we make few remarks on the functions x±(t, τ, α, ε). First
we note that when ε = 0 equation (2.8) reads :

{
ẋ = f−(x+ u−(t, α))− f−(u−(t, α))
x(0) = 0
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which has the (unique) solution x(t) = 0. Thus,

x−(t, τ, α, 0) = 0.

Next, differentiating equation (2.8) with respect to ε we see that ∂x−
∂ε (t, τ, α, 0)

satisfies the equation:

{
ẋ− f ′

−(u−(t, α))x = g−(t+ τ, u−(t, α), 0)
x(0) = 0.

Hence, :

x−,ε(t, τ, α, 0) :=
∂x−
∂ε

(t, τ, α, 0) =

∫ t

0

X−(t, α)X−(s, α)
−1g−(s+τ, u−(s, α), 0)ds.

Next, : x+(0, τ, α, ε) = 0 by the definition and differentiating equation (2.6)
with respect to ε at ε = 0 and using the equalities:

x+(0, τ, α, ε) = 0, h−,t(0, τ, 0, α, 0) = 0, h−,x(0, τ, 0, α, 0) = 0

we get :

tẋ+(0, τ, α, 0) =

∫ t

0

X+(t, α)X
−1
+ (s, α)g+(τ, u+(0, α), 0)ds.

So, equation (2.9) at ε = 0 and T± = T±(α) becomes:

q−(−T−(α), α) = q+(T+(α), α)

which is satisfied for α = 0. Now we look at equation (2.10). Since h−(t, τ, 0, α, 0) = 0,
h−(t, τ, 0, α, 0) = 0 we see that when ε = 0 and T− = T−(α) the equality is sat-
isfied. As a consequence, we get we get:

F(T+(α), T−(α), τ, α, 0) =

⎛
⎝ q−(−T−(α), α)− q+(T+(α), α)

0
T−(α)− T 0

−

⎞
⎠ (3.3)

and F(T 0
+, T

0
−, τ, 0, 0) = 0. Next we look at derivatives of F with respect to

T+, T−, α and ε at the point (T 0
+, T

0
−, τ, 0, 0). We have :

∂

∂T−
[x−(−T−, τ, α, ε) + q−(−T−, α)− x+(εT+, τ, α, ε)− q+(T+, α)]

= −ẋ−(−T−, τ, α, ε)− q̇−(−T−, α) → −q̇−(−T−, α), as ε → 0,

and similarly, using

εẋ+(εT+, τ, α, ε) = f(x+(εT+, τ, α, ε) + q+(T+, α))− f(q+(T+, α))+

εg(t+ τ, x+(εT+, τ, α, ε) + q+(T+, α), ε),
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we get

∂

∂T+
[x−(−T−, τ, α, ε) + q−(−T−, α)− x+(εT+, τ, α, ε)− q+(T+, α)]

= −εẋ+(εT+, τ, α, ε)− q̇+(T+, α) → −q̇+(T+, α), as ε → 0.

Next :

∂

∂α
[x−(−T−, τ, α, ε) + q−(−T−, α)− x+(εT+, τ, α, ε)− q+(T+, α)]

→ ∂q−
∂α

(−T−, α)−
∂q+
∂α

(T+, α), as ε → 0,

and

∂

∂τ
[x−(−T−, τ, α, ε) + q−(−T−, α)− x+(εT+, τ, α, ε)− q+(T+, α)] → 0 as ε → 0.

So, the Jacobian matrix L of F at the point (T 0
+, T

0
−, τ, 0, 0) is

L := ∂F
∂(T+,T−,τ,α) (T

0
+, T

0
−, τ, 0, 0)

=

⎛
⎝−q̇+(T

0
+, 0) −q̇−(−T 0

−, 0) 0 ∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)

0 −G′(q(−T 0
−, 0))q̇−(−T 0

−, 0) 0 G′(q(−T 0
−, 0))

∂q−
∂α (−T 0

−, 0)
0 1 0 0

⎞
⎠

and (μ+, μ−, τ, w) ∈ R × R × R × R
n−1 belongs to the kernel NL of L if and

only if ⎧⎪⎨
⎪⎩

μ− = 0[
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
w = q̇+(T

0
+, 0)μ+

G′(q−(−T 0
−, 0))

∂q−
∂α (−T 0

−, 0)w = 0.

(3.4)

From G(q−(−T−(α), α) = 0, we get G(q−(−T−(α), α) = 0 we get :

G′(q(−T 0
−, 0))

[
−q̇−(−T 0

−, 0)T
′
−(0) +

∂q−
∂α

(−T 0
−, 0)

]
= 0 (3.5)

thus, on account of the transversality condition G′(q(T 0
−, 0))q̇−(−T 0

−, 0) �= 0,
(3.4) is equivalent to :

⎧⎪⎨
⎪⎩

[
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
w = q̇+(T

0
+, 0)μ+

T ′
−(0)w = 0

μ− = 0.

(3.6)

Next, from G(q+(T+(α), α) = 0, we get G(q+(T+(α), α) = 0 we get :

G′(q(T 0
+, 0))

[
q̇+(T

0
+, 0)T

′
+(0) +

∂q+
∂α

(T 0
+, 0)

]
= 0 (3.7)
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then subtracting (3.5) from (3.7) and using q(T 0
+, 0) = q(−T 0

−, 0) we obtain:

G′(q(T 0
+, 0))

[
q̇+(T

0
+, 0)T

′
+(0) + q̇−(−T 0

−, 0)T
′
−(0)

]
= G′(q(T 0

+, 0))
[
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
.

So, if w ∈ R
n−1 satisfies (3.6), we see that

G′(q(T 0
+, 0))q̇+(T

0
+, 0)T

′
+(0)w = G′(q(T 0

+, 0))q̇+(T
0
+, 0)μ+

and then, on account of transversality, T ′
+(0)w = μ+. Summarizing, we have

seen that, if (μ+, μ−, τ, w) ∈ NL then μ+ = T ′
+(0)w, μ− = 0 and w ∈ R

n−1

satisfies : { [
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
w = q̇+(T

0
+, 0)T

′
+(0)w

T ′
−(0)w = 0.

(3.8)

On the other hand, if w ∈ R
n−1 satisfies (3.8), then (T ′

+(0)w, 0, τ, w) belongs
to NL. So NL = span {(0, 0, 1, 0)} if and only if system (3.8) has the trivial
solution w = 0 only. But (3.8) is equivalent to :

{
∂
∂α [q−(−T−(α), α)− q+(T+(α), α)]α=0 w = 0
T ′
−(0)w = 0,

and hence (3.8) has the trivial solution if and only if the non-degenerateness
condition (1.4) holds. We emphasize the fact that, assuming condition (1.4),
equation F(T+, T−, τ, α, 0) = 0 has the manifold of fixed points (T+, T−, τ, α) =
(T 0

+, T
0
−, τ, 0) and the linearization of F at these points is Fredholm with index

zero with the one-dimensional kernel span{(0, 0, 1, 0)}. Hence, there is a unique

vector, up to a multiplicative constant, ψ̃ ∈ R
n+2 such that ψ̃∗L = 0, ψ̃∗L = 0

i.e.,

ψ̃∗

⎛
⎝−q̇+(T

0
+, 0) −q̇−(−T 0

−, 0) 0 ∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)

0 −G′(q(−T 0
−, 0))q̇−(−T 0

−, 0) 0 G′(q(−T 0
−, 0))

∂q−
∂α (−T 0

−, 0)
0 1 0 0

⎞
⎠ = 0.

Writing ψ̃∗ = (ψ∗, ψ1, ψ2), ψ ∈ R
n, ψ1, ψ2 ∈ R we see that ψ, ψ1, ψ2 satisfy

(3.1). This proves the claim before the statement of Theorem 3.1.
We recall that our purpose is to solve the equation F(T+, T−, τ, α, ε) = 0

for ε �= 0 and that F(T+, T−, τ, α, 0) = 0 has the one-dimensional manifold of
solutions (T+, T−, τ, α) = (T 0

+, T
0
−, τ, 0) and its linearization along the points

of this manifold is Fredholm with the one-dimensional kernel span{(0, 0, 1, 0)}.
Hence, we are in position of applying the following result that has been more
or less proved in [15].

Theorem 3.2. Let, X, Y be Banach spaces and F : X × R → Y a C2-
map such that F (x, 0) = 0 has a C2, d−dimensional, manifold of solutions
M = {x = ξ(μ) | μ ∈ R

d}. Assume that for any μ in a neighborhood of μ = 0
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the linearization L(μ) = D1F (ξ(μ), 0) has the null space Tξ(μ)M = span{ξ′(μ)}.
Assume further that L(μ) is Fredholm with index zero and let Π(μ) : Y → RL(μ)
a projection of Y onto the range of L(μ). Then if the Poincaré-Melnikov func-
tion

[I−Π(μ)]D2F (ξ(μ), 0)

has a simple zero at μ = 0, there exists ε̄ > 0 and a unique map (−ε̄, ε̄) �→
x(ε) ∈ X such that F (x(ε), ε) = 0. Moreover, D1F (x(ε), ε) is an isomorphism
for ε �= 0.

Actually the statement in [15, Theorem 4.1] is slightly different from the
above. Hence, we give a proof of Theorem 3.2 in Appendix 7.2. We apply
Theorem 3.2 to the map F(T+, T−, τ, α, ε) with μ = τ . Then L(τ) = L is

independent of τ, τ and hence so is Π(τ) = Π. Next [I−Π]z =
˜ψ∗z

| ˜ψ|2
ψ̃ whereRL =

{ψ̃}⊥ and ψ̃∗ = (ψ∗, ψ1, ψ2) ∈ R
n+2, ψ ∈ R

n, ψ1, ψ2 ∈ R, is any vector satisfying
(3.1). To apply Theorem 3.2, we look at the derivative of F(T 0

+, T
0
−, τ, 0, ε) with

respect to ε at ε = 0. First, we have:

∂[x+(εT+, α, ε)− x−(−T−, α, ε)]

∂ε ε=0 =∫ T+

0

X+(T+, α)X+(s, α)
−1g+(τ, u(0, α), 0)ds

+

∫ 0

−T−

X−(−T−, α)X−(s, α)
−1g−(s+ τ, u−(s, α), 0)ds

whereas differentiating (2.10) with respect to ε at ε = 0 we get :

−G′(q−(−T−, α))

∫ 0

−T−

X−(−T−, α)X
−1
− (s, α)g−(s+ τ, q−(s, α), 0)ds.

We obtain then

∂F
∂ε (T

0
+, T

0
−, τ, 0, 0) =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
∫ T 0

+

0

X+(T
0
+, 0)X+(s, 0)

−1g+(τ, q+(0, 0), 0)ds

−
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1g−(s+ τ, q−(s, 0), 0)ds

−G′(q(−T 0
−, 0))

∫ 0

−T 0
−

X−(−T 0
−, 0)X

−1
− (s, 0)g−(s+ τ, q−(s, 0), 0)ds

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and then the Poincaré-Melnikov function is:

M(τ) :=

ψ∗
∫ T 0

+

0

X+(T
0
+, 0)X+(s, 0)

−1g+(τ, u(0, 0), 0)ds

+ψ∗
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1g−(s+ τ, u−(s, 0), 0)ds

+ψ1G
′(q(−T 0

−, 0))

∫ 0

−T 0
−

X−(−T 0
−, 0)X

−1
− (s, 0)g−(s+ τ, q−(s, 0), 0)ds.

(3.9)

The conclusion of Theorem 3.1 now easily follows from (3.9) and Theorem 3.2.

4 Poincaré-Melnikov function and adjoint system
In this section, Section we want to give a suitable definition of the adjoint
system of the linearization of (1.6) along q−(t) in such a way that the Poincaré-
Melnikov function (3.2) can be put in relation with the solutions of such an
adjoint system.

Let R : U0 ∩S → U+ ∩S be the C1−map defined in Introduction and recall
the impact equation (1.6):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = f−(x)
x(0) = q−(0, α) ∈ S ∩ U0

x(−T (α)) = R(x(0))
G(x(−T (α))) = 0
−T (α) ≤ t ≤ 0.

(4.1)

For α = 0, α = 0 (4.1) has the solution x(t) = q−(t, 0), −T 0
− ≤ t ≤ 0. We let

x(t, α) denote the solution of the impact system (4.1) on [−T (α), 0]. Then its
derivative with respect to α at α = 0 satisfies the linearized equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇ = f ′
−(q−(t, 0))u

u(0) = ∂q−
∂α (0, 0)

R′(q(0, 0))u(0) = u(−T 0
−)− q̇−(−T 0

−, 0)T1

G′(q−(−T 0
−, 0))[u(−T 0

−)− q̇−(−T 0
−, 0)T1] = 0

T ′(0) = T1 : R
n−1 → R.

(4.2)

Next, recalling (1.1), we consider a perturbed impact system of (4.1) (see also
(2.8)) of the form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = f−(x) + εg−(t+ τ, x, ε)
x(0) = q−(0, α) ∈ S ∩ U0

x(−T (α, ε)) = R(τ ;x(0), ε)
G(x(−T (α, ε))) = 0
−T (α, ε) ≤ t ≤ 0

(4.3)
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where R : R × U0 ∩ S × (−δ, δ) → U+ ∩ S is defined as follows: R(τ ; ξ, ε) =
x+(εT+(ξ, τ, ε), τ, ε) and x+(t, τ, ε) is the solution of

εẋ = f+(x) + εg+(t+ τ, x, ε)
x(0) = ξ.

Note that R is a C2−map on R × U0 ∩ S × R taking values on U+ ∩ S and
R(τ ; q(0, α), 0) = q+(T+(α), α); moreover, , moreoverwhen g+ is autonomous
then R is independent of τ , so we may take τ = 0 in its definition. We recall
that for simplicity we write R(ξ) instead of R(τ ; ξ, 0), ξ ∈ S.

To study the problem of existence of solutions of system (4.3), we are then
led to find conditions on h(t), d and T1 so that the non-homogeneous linear
equation: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇− f ′
−(q−(t, 0))u = h(t)

u(0) = ∂q−
∂α (0, 0)θ, θ ∈ R

n−1

u(−T 0
−)− q̇−(−T 0

−, 0)T −R′(q(0, 0))u(0) = d ∈ R
n

G′(q−(−T 0
−, 0))[u(−T 0

−)− q̇−(−T 0
−, 0)T ] = 0

T = T1

(4.4)

has a solution (u(t), θ, T ). Let us comment on equation (4.4) (and similarly on
(4.2)) that condition u(−T 0

−)− q̇−(−T 0
−, 0)T −R′(q(0, 0))u(0) = d only involves

the derivative of R(ξ) on the tangent space TξS since u(0) = ∂q−
∂α (0, 0) ∈ TξS,

ξ = q−(0, 0). So, it is independent of any extension we take of R(ξ) to a
neighbourhood neighborhood of q−(0, 0). We also note that for simplicity we
denote again by T1 the value of the linear functional T1 in (4.4).

Since G(R(q−(0, α))) = 0, G(R(q−(0, α))) = 0 we get

G′(R(q−(0, 0)))R
′(q−(0, 0))

∂q−
∂α

(0, 0)θ = 0

for any θ ∈ R
n−1 and then :

G′(R(q−(0, 0)))d = G′(R(q−(0, 0)))

[
u(−T 0

−)− q̇−(−T 0
−, 0)T −R′(q(0, 0))

∂q−
∂α

(0, 0)θ

]
= 0.

So, if equation (4.4) has a solution, we must necessarily have

G′(R(q−(0, 0)))d = 0 [⇔ G′(q+(T
0
+, 0))d = 0].

Next, we define two Hilbert spaces:

X :=

{
(u, θ, T ) ∈ W 1,2([−T 0

−, 0],R
n)× R

n−1 × R | u(0) = ∂q−
∂α

(0, 0)θ

}

Y :=
{
(h, d, T ) ∈ L2([−T 0

−, 0],R
n)× R

n−1 × R× R | G′(R(q−(0, 0)))d = 0
}
.

Note Y is a Hilbert space and X is a closed subspace of a Hilbert space
W 1,2([−T 0

−, 0],R
n)× R

n−1 × R. Then (4.4) can be written as

A(u, θ, T ) = (h, d, 0, T1)
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with

A(u, θ, T ) :=

⎛
⎜⎜⎝

u̇− f ′
−(q−(t, 0))u

u(−T 0
−)− q̇−(−T 0

−, 0)T −R′(q(0, 0))u(0)
G′(q−(−T 0

−, 0))[u(−T 0
−)− q̇−(−T 0

−, 0)T ]
T

⎞
⎟⎟⎠

and A : X → Y .

Lemma 4.1. The range RA is closed.

Proof. Indeed, let A(un, θn, Tn) = (hn, dn, 0, T
n
1 ) → (h̄, d̄, 0, T̄1). Then

un(t) =
∂q−
∂α

(t, 0)θn −
∫ 0

t

X−(t)X
−1
− (t, s)hn(s)ds

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R′(q(0, 0))
∂q−
∂α

(0, 0)θn − ∂q−
∂α

(−T 0
−, 0)θn

= −dn −
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1hn(s)ds− q̇−(−T 0
−, 0)T

n
1

G′(q−(−T 0
−, 0))dn = 0.

Since

−dn −
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1hn(s)ds− q̇−(−T 0
−, 0)T

n
1 →

−d̄−
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1h̄(s)ds− q̇−(−T 0
−, 0)T̄1,

and R
[
R′(q(0, 0))∂q−∂α (0, 0) · −∂q−

∂α (−T 0
−, 0)·

]
is closed, then G′(q−(−T 0

−, 0))d̄ =

0 and there exists θ̄ ∈ R
n−1 so that

R′(q(0, 0))
∂q−
∂α

(0, 0)θ̄ − ∂q−
∂α

(−T 0
−, 0)θ̄

= −d̄−
∫ 0

−T 0
−

X−(−T 0
−, 0)X−(s, 0)

−1h̄(s)ds− q̇−(−T 0
−, 0)T̄1.

By taking

ū(t) :=
∂q−
∂α

(t, 0)θ̄ −
∫ 0

t

X−(t)X
−1
− (t, s)h̄(s)ds, T̄ = T̄1,

we derive (h̄, d̄, 0, T̄1) = A(ū, θ̄, T̄ ) ∈ RA. The proof is finished.

Next, we prove the following result.
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Proposition 4.1. Let (h, d, T ) ∈ Y . Then the inhomogeneous system (4.4) has
a solution (u(t), θ, T ) ∈ X if and only if equation

∫ 0

−T 0
−

v(t)∗h(t)dt+ ψ∗d+ ψ2T1 = 0 (4.5)

holds for any solution v(t) of the adjoint system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇(t) + f ′
−(q−(t, 0))

∗v(t) = 0[
∂q−
∂α (0, 0)

]∗
[v(0)−R′(q−(0, 0))

∗ψ] = 0

v(−T 0
−) = ψ + ψ1G

′(q−(−T 0
−, 0))

∗

ψ∗q̇+(T
0
+, 0) = 0

(4.6)

and ψ2 = ψ∗q̇−(−T 0
−, 0) + ψ1G

′(q−(−T 0
−, 0))q̇−(−T 0

−, 0).

Proof. Before starting with the proof we observe that, because ofG′((q+(T
0
+, 0))d =

0, ψ is not uniquely determined by equation (4.5) since changing it with ψ +
λG′(q−(−T 0

−, 0))
∗, λ ∈ R, the equation remains the same. So, in equation (4.5),

we look for ψ in a subspace of Rn which is transverse to G′(q−(−T 0
−, 0)

∗. It
turns out that the best choice, from a computational point of view, is to take ψ
so that ψ∗q̇+(T

0
+, 0) = 0 (see equation (3.1))

First, we prove necessity. Assume that (4.4) can be solved for (u, θ, T ) ∈ X
and let (v(t), ψ, ψ1), v ∈ W 1,2([−T 0

−, 0],R
n), be a solution of equation (4.6).

Then
h(t) = u̇(t)− f ′(q−(t, 0))u(t)

d = u(−T 0
−)− q̇−(−T 0

−, 0)T −R′(q(0, 0))∂q−∂α (0, 0)θ
0 = G′(q−(−T 0

−, 0))[u(−T 0
−)− q̇−(−T 0

−, 0)T ]
T1 = T.

Plugging these equalities in the left-hand left hand side of (4.5) and integrating
by parts, (4.5) reads

v(0)∗
∂q−
∂α

(0, 0)θ − v(−T 0
−)

∗u(−T 0
−)−

∫ 0

−T 0
−

[v̇(t) + f ′
−(q−(t, 0))

∗v(t)]∗u(t)dt

+ψ∗[u(−T 0
−)− q̇−(−T 0

−, 0)T −R′(q(0, 0))∂q−∂α (0, 0)θ]
+ψ1G

′(q−(−T 0
−, 0))[u(−T 0

−)− q̇−(−T 0
−, 0)T ] + ψ2T = 0

or :

{[
∂q−
∂α

(0, 0)

]∗
[v(0)−R′(q−(0, 0))

∗ψ]

}∗

θ

+[ψ − v(−T 0
−) + ψ1G

′(q−(−T 0
−, 0))

∗]∗u(−T 0
−)

−
∫ 0

−T 0
−

[v̇(t) + f ′
−(q−(t, 0))

∗v(t)]∗u(t)dt

+[ψ2 − ψ∗q̇−(−T 0
−, 0)− ψ1G

′(q−(−T 0
−, 0))q̇−(−T 0

−, 0)]T = 0

(4.7)
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because of the definition of ψ2 and the fact that (v(t), ψ, ψ1) satisfies (4.6).
To prove the sufficiency, we show that if (h, d, T ) ∈ Y does not belong to

RA, then there exists a solution of the variational equation (4.6) such that (4.7)
does not hold. So, assume that (h, d, 0, T1) /∈ RA. By Lemma 4.1 and the
Hahn-Banach theorem, there is an (v̄, ψ̄, ψ̄1, ψ̄2) ∈ Y such that

〈(v̄, ψ̄, ψ̄1, ψ̄2), A(u, θ, T )〉 = 0, ∀(u, θ, T ) ∈ X, (4.8)

and
〈(v̄, ψ̄, ψ̄1, ψ̄2), (h, d, 0, T1)〉 = 1, (4.9)

where 〈·, ·〉 is the usual scalar product on Y . We already noted that we can
assume that ψ̄∗q̇+(T

0
+, 0) = 0, and (4.8)-(4.9) remain valid. Repeating our

previous arguments, we see that v(t) ∈ W 1,2([−T 0
−, 0],R

n) and that (4.8) implies
(v̄, ψ̄, ψ̄1, ψ̄2) solves the adjoint system (4.6). Summarising, if (h, d, 0, T1) /∈ RA
there exists a solution of the adjoint system for which (4.6) does not hold. This
finishes the proof.

Again we note that equation (4.6) only depends on the derivative R′(q−(0, 0))

on Tq−(0,0)S since ∂q−
∂α (0, 0)∗R′(q−(0, 0))

∗ψ =
[
q̇+(T

0
+, 0)T

′
+(0) +

∂q+
∂α (T 0

+, 0)
]∗

ψ =
∂q+
∂α (T 0

+, 0)
∗ψ, where we use ψ∗q̇+(T

0
+, 0) = 0 or, in other words, it is indepen-

dent of any C1−extension we take of R(ξ) to the whole U0.
We now prove the following proposition.

Proposition 4.2. The adjoint system (4.6) has a solution if and only if (ψ, ψ1)
satisfy the first and the third equation in (3.1) (and we take the second equation
in (3.1) as definition of ψ2).

Proof. Indeed let v(t) be a solution of (4.6) then :

v(t) = Y (t)Y (−T 0
−)

−1v(−T 0
−)

Y (t) = X−1
− (t)∗ being the fundamental matrix of the linear equation v̇(t) +

f ′
−(q−(t, 0))

∗v(t) = 0. Then, taking v(−T 0
−) = ψ + ψ1G

′(q−(−T 0
−, 0))

∗ the two
remaining condition in (4.6) read:{ [

∂q−
∂α (0, 0)

]∗ [
Y (−T 0

−)
−1[ψ + ψ1G

′(q−(−T 0
−, 0))

∗]−R′(q−(0, 0)
∗ψ
]
= 0

ψ∗q̇+(T
0
+, 0) = 0

that can be written as:{
∂q−
∂α (−T 0

−, 0)
∗[ψ + ψ1G

′(q−(−T 0
−, 0))

∗]−
[
ψ∗R′(q−(0, 0)

∂q−
∂α (0, 0)

]∗
= 0

ψ∗q̇+(T
0
+, 0) = 0

or else, on account of R(q−(0, α)) = q+(T+(α), α):{
ψ∗

[
∂q−
∂α (−T 0

−, 0)−
∂q+
∂α (T 0

+, 0)
]
+ ψ1G

′(q−(−T 0
−, 0))

∂q−
∂α (−T 0

−, 0) = 0

ψ∗q̇+(T
0
+, 0) = 0.

The proof is finished.
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We conclude this section Section giving another expression of the Poincaré-
Melnikov function (3.2) in terms of the solution of the adjoint system (4.6). To
this end, let v(t) be a solution of the adjoint system (4.6). Since a fundamental
matrix of the linear equation

v̇ + f ′
−(q−(t, 0))v = 0

is X−1
− (t)∗ we see that

v(t) = X−1
− (t)∗X−(−T 0

−)
∗v(−T 0

−) = X−1
− (t)∗X−(−T 0

−)
∗ [ψ + ψ1G

′(q−(−T 0
−, 0))

∗]
so:

v∗(t) =
[
ψ∗ + ψ1G

′(q−(−T 0
−, 0))

]
X−(−T 0

−)X
−1
− (t).

Then

M(τ) = ψ∗
∫ T 0

+

0

X+(T
0
+)X+(t)

−1g+(τ, q+(0, 0), 0)dt+

∫ 0

−T 0
−

v(t)∗g−(t+τ, q−(t, 0), 0)dt.

As for the first term in the above equality, we can show it is related to the
impact R(τ ; ξ, ε). Indeed, from Section 2 we know that the solution of the
singular equation

ẋ = f+(x) + εg(t, x, ε)

can be written as :

x(t+ τ) = x+(t) + q+(ε
−1t, α)

with x+(εt) as in equation (2.6). Thus, ξ = x(τ) = q+(0, α) ∈ S and

R(τ ; ξ, ε) = x+(εT+) + q+(T+, α)

=

∫ T+

0

X+(T+, α)X
−1
+ (s, α)h+(εs, τ, x+(εs), α, ε)ds+ q+(T+, α)

for some T+ = T+(τ ;α, ε). Then

∂R

∂ε
(τ ; q−(0, 0), 0) = q̇+(T

0
+, 0)

∂T+

∂ε
+

∫ T 0
+

0

X+(T
0
+)X

−1
+ (s)g+(τ, q+(0, 0), 0)ds

and then, using again ψ∗q̇+(T
0
+, 0) = 0 we see that :

ψ∗
∫ T 0

+

0

X+(T
0
+)X

−1
+ (s)g+(τ, q+(0, 0), 0)ds = ψ∗ ∂R

∂ε
(τ ; q−(0, 0), 0)

i.e.

M(τ) = ψ∗ ∂R

∂ε
(τ ; q−(0, 0), 0) +

∫ 0

−T 0
−

v(t)∗g−(t+ τ, q−(t, 0), 0)dt. (4.10)

When g+ is autonomous, then R is independent of τ , and the expression (4.10)
of the Poincaré-Melnikov function should be compared with the one given in [2,
Theorem 4.2] where a Poincaré-Melnikov function, characterizing transition to
chaos, is given for almost periodic perturbations of autonomous impact equa-
tions with a homoclinic orbit.
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5 The case of a manifold of periodic solutions
In this section Section we assume that q−(−T−(α), α) = q+(T+(α), α) for any
α in (an open neighborhood of α = 0 in) Rn−1. Hence, from (3.3), we see that

F(T+(α), T−(α), τ, α, 0) =

⎛
⎝ 0

0
T−(α)− T 0

−

⎞
⎠ .

We distinguish the two cases: T ′
−(0) �= 0 and T−(α) = T 0

− for all α in (an open
neighborhood of α = 0 in) Rn−1. First, we assume that

T ′
−(0) �= 0.

Then a C2, (n − 2)−dimensional submanifold S of (an open neighborhood of
α = 0 in) R

n−1 exists such that T−(α) = T 0
− for any α ∈ S. So, for ε = 0,

F(T+, T−, τ, α, 0) = 0 has the (n− 1)−dimensional manifold of solutions

(T+, T−, τ, α) = ξ(α, τ) := (T+(α), T
0
−, τ, α), (α, τ) ∈ S × R.

So, we are in position to apply Theorem 3.2. First, we have to verify that
the kernel ND1F(ξ(α, τ), 0) equals the tangent space Tξ(α,τ)X , X = {ξ(α, τ) |
(α, τ) ∈ S × R}, and then that the Poincaré-Melnikov function (vector):

[I−Π(α, τ)]D2F(ξ(α, τ), 0)

has a simple zero at (α, τ) = (0, τ0). Note that

Tξ(α,τ)X = span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
T ′
+(α)v
0
0
v

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ : v ∈ TαS

⎫⎪⎪⎬
⎪⎪⎭

.

From (3.3), we get:

D1F(ξ(α, τ), 0) =⎛
⎝−q̇+(T+(α), α) −q̇−(−T 0

−, α) 0 ∂q−
∂α (−T 0

−, α)−
∂q+
∂α (T+(α), α)

0 −G′(q−(−T 0
−, α))q̇−(−T 0

−, α) 0 G′(q−(−T 0
−, α))

∂q−
∂α (−T 0

−, α)
0 1 0 0

⎞
⎠ .

Note that D1F(ξ(α, τ), 0) does not depend on τ . Using G(q−(−T 0
−, α)) = 0 and

q−(−T 0
−, α) = q+(T+(α), α) for any α ∈ S we easily see that :

D1F(ξ(α, τ), 0)|Tξ(α,τ)X
= 0

for any v ∈ TαS. On the other hand, assume that

⎛
⎝μ+

μ−
w

⎞
⎠ ∈ N

⎛
⎝−q̇+(T+(α), α) −q̇−(−T 0

−, α)
∂q−
∂α (−T 0

−, α)−
∂q+
∂α (T+(α), α)

0 −G′(q−(−T 0
−, α))q̇−(−T 0

−, α) G′(q−(−T 0
−, α))

∂q−
∂α (−T 0

−, α)
0 1 0

⎞
⎠
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for some μ+, μ− ∈ R and w ∈ R
n−1. Then μ− = 0 and (μ+, w) satisfies{

−q̇+(T+(α), α)μ+ +
[
∂q−
∂α (−T 0

−, α)−
∂q+
∂α (T+(α), α)

]
w = 0

G′(q−(−T 0
−, α))

∂q−
∂α (−T 0

−, α)w = 0

that, on account of q−(−T 0
−, α) = q+(T+(α), α) is equivalent to

{
q̇+(T+(α), α)[T

′
+(α)w − μ+] = 0

G′(q−(−T 0
−, α))

∂q−
∂α (−T 0

−, α)w = 0.

Now, from G(q−(−T−(α), α) = 0 we get, for any w ∈ R
n−1:

G′(q−(−T−(α), α)
∂q−
∂α

(−T−(α), α)w = G′(q−(−T−(α), α)q̇−(−T−(α), α)T
′
−(α)w

and hence

G′(q−(−T 0
−, α))

∂q−
∂α

(−T−, α)w = 0 ⇔ G′(q−(−T 0
−, α))q̇−(−T 0

−, α)T
′
−(α)w = 0

which, in turn, is equivalent to w ∈ TαS because of transversality and the fact
that TαS = NT ′

−(α).
Hence, we conclude that ND1F(ξ(α, τ), 0) = Tξ(α,τ)X .
Now we consider the second condition. The Poincaré-Melnikov function

(vector) [I−Π(α, τ)]D2F(ξ(α, τ), 0), α ∈ S can be written as

ψ∗(α, τ)D2F(ξ(α, τ), 0) (5.1)

where ψ∗(α, τ) is a matrix whose rows are left eigenvectors of zero eigenvalue
of the matrix D1F(ξ(α, τ), 0), that is, D1F(ξ(α, τ), 0) that is

ψ∗(α, τ)D1F(ξ(α, τ), 0) = 0. (5.2)

Note that ψ(α, τ) = ψ(α) does not depend on τ since so does D1F(ξ(α, τ), 0).
Then (5.1) reads:

M(α, τ) := ψ∗(α)

∫ T 0
+

0

X+(T
0
+, α)X+(s, α)

−1g+(τ, q(0, α), 0)ds

+ψ∗(α)

∫ 0

−T 0
−

X−(−T 0
−, α)X−(s, α)

−1g−(s+ τ, q−(s, α), 0)ds

+ψ1(α)G
′(q(−T 0

−, α))

∫ 0

−T 0
−

X−(−T 0
−, α)X

−1
− (s, α)g−(s+ τ, q−(s, α), 0)ds.

Arguing as in Section 3, equation (5.2) is equivalent to
⎧⎪⎨
⎪⎩

ψ∗(α)q̇+(T+(α), α) = 0
ψ2(α) =

[
ψ∗(α) + ψ1(α)G

′(q(−T 0
−, α))

]
q̇−(−T 0

−, α)

ψ∗(α)
[
∂q−
∂α (−T 0

−, α)−
∂q+
∂α (T+(α), α)

]
+ ψ1(α)G

′(q(−T 0
−, α))

∂q−
∂α (−T 0

−, α) = 0.

(5.3)
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Moreover, the adjoint variational system along q−(t, α) is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̇(t) + f ′
−(q−(t, α))

∗v(t) = 0[
∂q−
∂α (0, α)

]∗
[v(0)−R′(q−(0, α))

∗ψ(α)] = 0

v(−T 0
−) = ψ(α) + ψ1(α)G

′(q−(−T 0
−, α))

∗

ψ∗(α)q̇+(T+(α), α) = 0

(5.4)

where (ψ∗(α), ψ1(α), ψ2(α)) satisfy equation (5.2). Then the Poincaré-Melnikov
vector can be written as :

M(α, τ) = ψ∗(α)

∫ T+(α)

0

X+(T+(α), α)X+(t, α)g+(τ, q+(0, α), 0)dt

+

∫ 0

−T 0
−

v(t, α)∗g−(t+ τ, q−(t, α), 0)dt
(5.5)

or else :

M(α, τ) = ψ∗(α)
∂R

∂ε
(τ ; q−(0, α), 0)+

∫ 0

−T 0
−

v(t, α)∗g−(t+τ, q−(t, α), 0)dt (5.6)

v(t, α) being the solution of (5.4) and X+(t, α) the fundamental matrix of the
linear equation

ẋ = f ′
+(q+(t, α))x.

Of course the only difference between the cases T ′
−(0) �= 0 and T−(α) = T 0

− for
all α ∈ S is that in the first case the Poincaré-Melnikov function is defined for
(α, τ) ∈ S × R while in the second it is defined for (α, τ) ∈ O × R for an open
neigbourhood O of 0 ∈ R

n−1. Summarizing, we proved the following result.:

Theorem 5.1. Assume that q−(−T−(α), α) = q+(T+(α), α) for any α in a
neighborhood of α = 0, and that either T ′

−(0) �= 0 or T−(α) = T 0
− for any α

(in the same neighborhood). Then system (5.3) has a d−dimensional space of
solutions where d = n or d = n + 1 according to which of the two conditions
T ′
−(0) �= 0 or T−(α) = T 0

− holds. Moreover, if the Poincaré-Melnikov function
(5.5) (or (5.6)) has a simple zero at (0, τ0) then system (1.1) has a Tε−periodic
solution x(t, ε) satisfying (2.1).

Finally, we note that when we can show that a Brouwer degree of a Poincaré-
Melnikov function from either Theorem 3.1 or 5.1 is non-zero nonzero then by
following [7] we can show existence results.

6 Examples
We consider a second-order second order equation

{
ε2ẍ = f+(x, ẋ) + εg+(t, x, ẋ, ε), x > 0
ẍ = f−(x) + εg−(t, x, ẋ, ε), x < 0
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with the line x = 0 as discontinuity manifold (i.e., with G(x, ẋ) = x). We

write q±(t, α) =
(

q±1 (t,α)

q̇±1 (t,α)

)
with q−(0, α) =

(
0

α+α0

)
(i.e. q±1 (0, α) = 0 and

q̇−1 (0, α) = α+ α0). We also write q+(T+(α), α) =
(

0
ϕ(α)

)
so that :

R :

(
0

α+ α0

)
�→

(
0

ϕ(α)

)

i.e., we take

R(x1, x2) =

(
0

ϕ(x2 − α0)

)

in the plane coordinates (x1, x2). According to equation (5.4), the adjoint vari-

ational system reads, with ψ(α) =
(

ψ′(α)

ψ′′(α)

)
:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v̇1 = −f ′
−(q

−
1 (t, α))v2

v̇2 = −v1
v2(0)− ϕ′(α)ψ′′(α) = 0
v1(−T 0

−) = ψ′(α) + ψ1(α)
v2(−T 0

−) = ψ′′(α)
ψ′(α)ϕ(α) + ψ′′(α)f+(0, ϕ(α)) = 0

which can be written as (with v2 = w and v1 = −ẇ):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẅ = f ′
−(q

−
1 (t, α))w

w(0)− ϕ′(α)w(−T 0
−) = 0

ψ′′ = w(−T 0
−)

ψ′ϕ(α) + ψ′′f+(0, ϕ(α)) = 0
ψ1 = −ẇ(−T 0

−)− ψ′.

(6.1)

Note that (when ϕ(α) �= 0) the last three equation are actually the definitions

of ψ(α) =
(

ψ′(α)

ψ′′(α)

)
, and ψ1(α) in terms of the unique (up to a multiplicative

constant) bounded solution of the boundary value problem:

{
ẅ = f ′

−(q
−
1 (t, α))w

w(0)− ϕ′(α)w(−T 0
−) = 0

and the Poincaré-Melnikov function (5.6) reads:

M(α, τ) = w(−T 0
−, α)

(
− f+(0,ϕ(α))

ϕ(α) 1
) ∂R

∂ε
(τ ; q−(0, α), 0)+

∫ 0

−T 0
−

w(t, α)g−(t+τ, q−(t, α), 0)dt

whereas (4.10) reads:

M(τ) = w(−T 0
−)

(
− f+(0,ϕ(0))

ϕ(0) 1
) ∂R

∂ε
(τ ; q−(0, 0), 0)+

∫ 0

−T 0
−

w(t)g−(t+τ, q−(t, 0), 0)dt.

BVP_182_delta [03/29 08:53]    22/34



Flaviano Battelli and Michal Fečkan 23

As an example, we take f−(x) = −x that is we consider the equation

ẍ+ x = εg−(t, x, ẋ, ε).

The unperturbed equation ẍ + x = 0 with the condition ẋ(0) = 0 has the
solutions:

q−(t, α) = (α+ α0)

(
sin t
cos t

)
, −π ≤ t ≤ 0

and T−(α) = π. Note that, to have q−(t, α) ∈ {(x1, x2) | x1 < 0} for −π < t < 0
we need α+ α0 > 0.

We assume we are in the first (non degenerate) case that is it holds (1.4),
which now has the form

R(q−(0, 0)) = q−(−π, 0)
∂
∂α [R(q−(0, α))− q−(−π, α)]α=0 �= 0.

(6.2)

Note T ′
−(0) = 0 for this case. Since

R(q−(0, α))− q−(−π, α) =

(
0

ϕ(α) + α+ α0

)
,

(6.2) is equivalent to

ϕ(0) = −α0, ϕ′(0) + 1 �= 0. (6.3)

Then it is easily seen that system (6.1), with α = 0, reads :
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẅ + w = 0
w(0)− ϕ′(0)w(−π) = 0
ψ′′ = w(−π)
−ψ′α0 + ψ′′f+(0,−α0) = 0
ψ1 = −ẇ(−π)− ψ′.

Solving ẅ + w = 0, ẅ + w = 0 we get w(t) = a cos(t + t0) and the boundary
condition reads: a(1+ϕ′(0)) cos t0 = 0. So, we can take w(t) = cos(t− π

2 ) = sin t.
Since ϕ(0) = −α0 �= 0, then ϕ(0) = −α0 �= 0 then :

ψ′′ = 0, ψ′ = 0, ψ1 = 1

and the Poincaré-Melnikov function reads :

M(τ) =

∫ 0

−π

g−(t+ τ, α0 sin t, α0 cos t, 0) sin t dt.

For example, taking g−(t, x, ẋ, ε) = −ẋ cos2
(

π
π+εT 0

+

)
t, where T 0

+ is the time

the solution of equation ẍ = f+(x, ẋ), x(0) = 0, ẋ(0) = α0 takes to reach the
discontinuity manifold x = 0, we get :

M(τ) =
π

8
α0 sin(2τ)

BVP_182_delta [03/29 08:53]    23/34



Flaviano Battelli and Michal Fečkan 24

which has a simple zero at τ = 0.
To conclude the example we need to find a second-order second order equa-

tion ẍ = f+(x, ẋ) such that (6.3) holds. We consider

ẍ+ x = f+(x, ẋ) := f(x2 + ẋ2 − 1)g(x, ẋ)

with f(0) = 0 and f ′(0) �= 0. It has the solution x = sin t and y = cos t. So,

we take q+(t) = (sin t, cos t) and then T 0
+ = π. Note q+(T+(α), α) =

(
0

ϕ(α)

)
is

equivalent to q+1 (T+(α), α) = 0 and q̇+1 (T+(α), α) = ϕ(α). Then ϕ(0) = −1, so
we take α0 = 1. Furthermore,

ϕ′(0) = q̈+1 (π, 0)T
′
+(0) +

∂

∂α
q̇+1 (π, 0) =

∂

∂α
q̇+1 (π, 0).

Setting ζ(t) := ∂
∂αq

+
1 (t, 0), ζ(t) :=

∂
∂αq

+
1 (t, 0) we have

ζ̈ + ζ = 2f ′(0)g(sin t, cos t)(ζ sin t+ ζ̇ cos t). (6.4)

Since q+1 (0, α) = 0 and q̇+1 (0, α) = α + 1, we obtain ζ(0) = 0 and ζ(0) = 1.
Clearly, (6.4) has a solution ζ1(t) = cos t. Then the second solution is

ζ2(t) = cos t

∫ t

0

e2f
′(0)

∫ s
0
cosσg(sinσ,cosσ)dσ

cos2 s
ds = sin t e2f

′(0)
∫ t
0
cosσg(sinσ,cosσ)dσ

+2f ′(0) cos t

∫ t

0

g(sin s, cos s) e2f
′(0)

∫ s
0
cosσg(sinσ,cosσ)dσ sin sds.

Hence,

ζ̇2(t) = cos t e2f
′(0)

∫ t
0
g(sinσ,cosσ) cosσdv

+f ′(0) sin 2t g(sin t, cos t) e2f
′(0)

∫ t
0
g(sinσ,cosσ) cosσdσ

−2f ′(0) sin t
∫ t

0
sin s g(sin s, cos s) e2f

′(0)
∫ s
0
g(sinσ,cosσ) cosσdσds

+f ′(0) sin 2t g(sin t, cos t) e2f
′(0)

∫ t
0
g(sinσ,cosσ) cosσdσ.

This implies
ϕ′(0) = ζ̇2(π) = − e2f

′(0)
∫ π
0

g(sinσ,cosσ) cosσdσ.

Consequently, if ∫ π

0

g(sinσ, cosσ) cosσdσ �= 0

then ϕ′(0) �= −1. So, we conclude with the following. :

Corollary 6.1. Let f(r) and g(x, ẋ), g−(t, x, ẋ, ε) be C2 functions such that
f(0) = 0 �= f ′(0), g−(t, x, ẋ, ε) = g−(t+ (1 + ε)π, x, ẋ, ε) and

∫ π

0

g(sin t, cos t) cos tdt �= 0.
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Suppose, also, that the function

M(τ) :=

∫ 0

−π

g−(t+ τ, sin t, cos t, 0) sin tdt

has a simple zero at τ = 0. Then, for ε > 0, ε > 0 sufficiently small the singu-
larly perturbed system

{
ε2ẍ+ x = f(x2 + ẋ2 − 1)g(x, ẋ) if x > 0
ẍ+ x = εg−(t, x, ẋ, ε) if x < 0

has a (1 + ε)π−periodic solution orbitally near the set {(sin t, cos t) | −π ≤ t ≤
π}.

To get a second example, we change the above as follows: we take

Ω+ = {(x, ẋ) | x < 0, ẋ > 0} , and Ω− = R
2 \ Ω+

with equations: ⎧⎨
⎩

ẍ+ x = εg−(t, x, ẋ, ε) for (x, ẋ) ∈ Ω−

ε2ẍ+ 2x+ 3
2x

2 = 0 for (x, ẋ) ∈ Ω+.

It should be noted that the discontinuity line is the union of the two half lines
{x = 0, ẋ > 0} and {x < 0, ẋ = 0} which is not C1. However, all results
hold true as long as we remain outside a (small) neighbourhood neighborhood
of (0, 0).

The unperturbed equation on Ω− has the solutions:

q−(t, α) = (α+ 1)

(
− cos t
sin t

)
, −3

2
π ≤ t ≤ 0

with q−(0, α) = −(α+1)

(
1
0

)
and q−

(
− 3

2π, α
)
= (α+1)

(
0
1

)
. Then q+(T+(α), α) =

R(q−(0, α)) is the value of the solution

(
z+(t, α)
ż+(t, α)

)
of :

ẍ+ 2x+
3

2
x2 = 0, x(0) = −(1 + α), ẋ(0) = 0

at the time T+(α) where z+(T+(α), α) = 0. Since the equation has the Hamilto-
nian H+(x, ẋ) = ẋ2 + (x+ 2)x2, H+(x, ẋ) = ẋ2 + (x+ 2)x2 we see that z+(t, α)
satisfies :

ż2(t) + (z(t) + 2)z2(t) = (1− α)(1 + α)2, z(0) = −1− α, (6.5)

and hence :

R(q−(0, α)) = q+(T+(α), α) =

(
0

(1 + α)
√
1− α

)
. (6.6)
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We observe that T 0
+ is the first positive time such that x(T 0

+) = 0 where x(t) =
z+(t, 1) is the solution of

ẋ2 + (x+ 2)x2 = 1, x(0) = −1,

hence :

T 0
+ =

∫ 0

−1

dx√
1− x2(x+ 2)

	 1.88292. (6.7)

More related results are derived in Section 7.1.
Then equations (6.2) have to be changed to :

R(q−(0, 0)) = q−(− 3
2π, 0)

∂
∂α

[
R(q−(0, α))− q−(− 3

2π, α)
]
α=0

�= 0.
(6.8)

But :

R(q−(0, α))− q−(−
3

2
π, α) = (1 + α)

(
0√

1− α− 1

)

and (6.8) easily follows. Now we compute the variational equation and the
Poincaré-Melnikov function. From (6.6) and q−(0, α) =

(−(α+1)
0

)
, it follows

q−(0, α) =
(−(α+1)

0

)
it follow that we can take

R(x1, x2) =

(
0

−x1

√
x1 + 2

)

from which we get :

R′(q−(0, 0)) =

(
0 0
− 1

2 0

)
.

Note ẍ+2x+ 3
2x

2 = 0 has a homoclinic solution − 2
3

(
3 tanh

[
t√
2

]2
− 1

)
, so the

solution q+(t, α) is a part of a periodic solution inside of Ω+ bounded by the
homoclinic one (see Figure 1). Then, since in a neighborhood of q−

(
− 3

2π, 0
)
=

�1.0 �0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1: The upper parts of homoclinic and periodic orbits of ẍ+ 2x+ 3
2
x2 = 0.

BVP_182_delta [03/29 08:53]    26/34



Flaviano Battelli and Michal Fečkan 27

( 01 ) we have G(x1, x2) = −x1 we get :

G′
(
q−

(
−3

2
π, 0

))
=

(
−1
0

)
.

Finally, since the equations on Ω+ can be written as

{
ẋ1 = x2

ẋ2 = −2x1 − 3
2x

2
1

we get :

f+(q+(T+(α), α)) = f+(0, (1 + α)
√
1− α) =

(
(1 + α)

√
1− α

0

)
.

Putting all together we see that the adjoint variational system reads:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẅ + w = 0(−1
0

)∗ [(−ẇ(0)
w(0)

)
−
(

− 1
2ψ

′′

0

)]
= 0(

−ẇ(− 3
2π)

w(− 3
2π)

)
=
(

ψ′

ψ′′

)
+ ψ1

(−1
0

)
(

ψ′

ψ′′

)
· ( 10 ) = 0

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẅ + w = 0
ẇ(0) = 1

2ψ
′′

w
(
− 3

2π
)
= ψ′′

ẇ
(
− 3

2π
)
= −ψ′ + ψ1

ψ′ = 0.

The first three equations give the boundary value problem

ẅ + w = 0, 2ẇ(0)− w

(
−3

2
π

)
= 0

possessing the unique solution (up to a multiplicative constant) w(t) = cos t
which gives :

ψ′ = 0, ψ′′ = 0, ψ1 = −1

and, since g+(t, x, ε) = 0, the Poincaré-Melnikov function is

M(τ) =

∫ 0

− 3
2π

g−(t+ τ,− cos t, sin t, 0) cos t dt . (6.9)

We conclude with the following. :

Corollary 6.2. Let T 0
+ be as in equation Eq. (6.7), g−(t, x, ẋ, ε) be a (π +

εT 0
+)−periodic, C2 function and suppose that the function (6.9) has a simple

zero at τ = 0. Then, for ε > 0, ε > 0 sufficiently small the singularly perturbed
system {

ε2ẍ+ 2x+ 3
2x

2 = 0 if x < 0 and ẋ > 0
ẍ+ x = εg−(t, x, ẋ, ε) elsewhere

has a (π+ εT 0
+)−periodic solution orbitally near the set {(− cos t, sin t) | − 3

2π ≤
t ≤ 0} ∪ {(z+(t, 0), ż+(t, 0) | 0 ≤ t ≤ T 0

+}.
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As an example of the second situation, we consider the case where f+(x) =
f−(x) = −x, Ω− = {(x, ẋ) | x < 0}, Ω+ = {(x, ẋ) | x > 0}, Ω+ = {(x, ẋ) | x > 0}
i.e., we take {

ε2ẍ+ x = 0 if x > 0
ẍ+ x = εg−(t, x, ẋ, ε) if x < 0

(6.10)

where g−(t, x, ẋ, ε) is a (1 + ε)π−periodic, C2 function. Since

q+(t, α) = (α+ α0)

(
sin t
cos t

)
, 0 ≤ t ≤ π

we get ϕ(α) = −α−α0 for any α in a neighborhood of α = 0 and α0 > 0. Hence,
we are in the degenerate case considered in Section 5. The adjoint variational
equation along q−(t, α) reads now:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẅ + w = 0
w(0) + w(−π) = 0
ψ′′ = w(−π)
−(α+ α0)ψ

′ = 0
ψ1 = −ẇ(−π)− ψ′.

The first two equations have the two-dimensional two dimensional family of
solutions w(t) = c cos(t+ t0). We take the two independent solutions: w1(t) =
cos t and w2(t) = sin t with the corresponding vectors:

ψ′′
1 = −1, ψ′

1 = 0, ψ
(1)
1 = 0

ψ′′
2 = 0, ψ′

2 = 0, ψ
(2)
1 = 1.

With g+(t, x, ẋ, ε) = 0 (which impliesR(τ ; ξ, ε) is independent of ε) the Poincaré-
Melnikov vector is then :

M(α, τ) =

⎛
⎜⎜⎝
∫ 0

−π

g−(t+ τ, α sin t, α cos t, 0) cos t dt∫ 0

−π

g−(t+ τ, α sin t, α cos t, 0) sin t dt

⎞
⎟⎟⎠ .

Then we obtain the following corollary. :

Corollary 6.3. Let g−(t, x, ẋ, ε) be a (1 + ε)π−periodic, C2 function and sup-
pose that M(α, τ) has a simple zero at α = α0, τ = 0. Then the singularly
perturbed system (6.10) has a (1 + ε)π−periodic solution orbitally near the set
{(sin t, cos t) | −π ≤ t ≤ π}.

7 Appendix
7.1 Further properties of the solution of (6.5)

From the identity

ż2+(t, α) + (z+(t, α) + 2)z2+(t, α) = (1− α)(1 + α)2
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we derive
ż2+(t, α)

(1− α)(1 + α)2 − (z+(t, α) + 2)z2+(t, α)
= 1. (7.1)

Note that

(1− α)(1 + α)2 − (x+ 2)x2 = −(1 + α+ x)(−1 + α2 + x− αx+ x2)

= (Aα − x) (x−Bα) (x− Cα) ,

where

Aα =
−1 + α+

√
5− 2α− 3α2

2
, Bα = −1− α,

Cα =
−1 + α−

√
5− 2α− 3α2

2

and, for α sufficiently small, (in fact for α ∈
(
−1, 1

3

)
)

Aα > 0 > Bα > Cα.

Using formula 3.131.5 in [8, p.254 page 254 ] we know that, for any A ≥ u >
B > C: ∫ u

B

dx√
(A− x)(x−B)(x− C)

=
2F (κ, p)√
A− C

where

κ := arcsin

√
(A− C)(u−B)

(A−B)(u− C)
, p :=

√
A−B

A− C

and F is the elliptic integral of the first kind.
Next note −1 − α ≤ z+(t, α) ≤ 0, ż+(t, α) ≥ 0 for t ∈ [0, T+(α)] and

z+(0, α) = −1− α, z+(T+(α), α) = 0. Hence, (7.1) gives

T+(α) =

∫ T+(α)

0

dt =

∫ T+(α)

0

ż+(t, α)√
(1− α)(1 + α)2 − (z+(t, α) + 2)z2+(t, α)

=

∫ 0

Bα

dx√
(Aα − x)(x−Bα)(x− Cα)

=
2F (κα, pα)√
Aα − Cα

where

κα = arcsin

[√
10 + 6α

5 + 3α+ 3
√
5− 2α− 3α2

]

pα =

√
1 + 3α+

√
5− 2α− 3α2

2
√
(1− α)(5 + 3α)

.

So,

T+(α) =
2F (κα, pα)

4
√
5− 2α− 3α2

.
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We are interested in α = 0. Then

κ0 = arcsin

[√
10

5 + 3
√
5

]
, p0 =

√
1 +

√
5√

2 4
√
5

,

and hence

T+(0) =

2F

(
arcsin

[√
10

5+3
√
5

]
,

√
1+

√
5√

2 4√5

)

4
√
5

.
= 1.88292.

(7.2)

On the other hand, by (6.7), we directly verify that T+(0)
.
= 1.88292 by a

numerical integration. But we derived (7.2) to get an explicit formula for T+(0)
and in general for T+(α).

Furthermore, the above computations also give

t =

∫ z+(t,α)

Bα

dx√
(Aα − x)(x−Bα)(x− Cα)

=
2F (κα(t), pα)
4
√
5− 2α− 3α2

(7.3)

for any 0 ≤ t ≤ T+(α) and

κα(t) =

arcsin

⎡
⎣2
√ √

(1− α)(5 + 3α)(1 + α+ z+(t, α))

(1 + 3α+
√
5− 2α− 3α2)(1− α+

√
5− 2α− 3α2 + 2z+(t, α))

⎤
⎦ .

(7.4)
Solving (7.3), we obtain

κα(t) = am

(
4
√
5− 2α− 3α2

t

2
, pα

)

where am is the Jacobi amplitude function. Solving (7.4), we obtain

z+(t, α) =

(1 + α)
(
−3 +

√
5− 2α− 3α2 − 3α(−1 +Hα(t)) +

(
3 +

√
5− 2α− 3α2

)
Hα(t)

)
1−

√
5− 2α− 3α2 − 3α(−1 +Hα(t))−Hα(t)−

√
5− 2α− 3α2Hα(t)

(7.5)
for

Hα(t) := cos2(κα(t)) = cn2
(

4
√

5− 2α− 3α2
t

2
, pα

)
(7.6)

where cn is the Jacobi elliptic function. Formulas (7.5) and (7.6) give explicit
solution z+(t, α). For α = 0, we derive α = 0 we derive :

z+(t, 0) =

−3 +
√
5 +

(
3 +

√
5
)
cn

(
4
√
5 t
2 ,

√
1+

√
5√

2 4√5

)2

1−
√
5−

(
1 +

√
5
)
cn

(
4
√
5 t
2 ,

√
1+

√
5√

2 4√5

)2 . (7.7)
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We can also compute the Taylor series of (7.7) integrating by series the equation
ẍ+ 2x+ 3

2x
2 = 0 with x(0) = −1, ẋ(0) = 0. Setting

x(t) = −1 +

∞∑
n=2

an
n!

tn

we see that the following recurrence condition holds:

an+2

n!
+ 2

an
n!

+
3

2

n∑
h=0

an−h

(n− h)!

ah
h!

= 0 ⇔ an+2 + 2an +
3

2

n∑
h=0

( nh ) an−hah = 0,

where we set ( 00 ) = 1 and a0 = −1, a1 = 0. Since a1 = 0, a1 = 0 we see by the
induction that a2k+1 = 0 for any k ∈ N (note that in the product aha2k+1−h

one of the two indexes is odd). So,

x(t) = −1 +
∞∑

n=1

a2n
t2n

(2n)!

and

a2(n+1) + 2a2n +
3

2

n∑
h=0

( 2n2h ) a2(n−h)a2h = 0.

For the first few indexes, we get

a2 = a4 =
1

2
, a6 = a4 − 9a22 = −7

4
, a8 = a6 − 45a2a4 = −13,

a10 = a8 − 84a2a6 − 105a24 =
137

4
a12 = a10 − 135a2a8 − 630a4a6 = 1463

so that:

z+(t, 0) = −1 +
1

2 · 2! t
2 +

1

2 · 4! t
4 − 7

4 · 6! t
6 − 13

8!
t8 +

137

4 · 10! t
10 +

1463

12!
t12 + . . . .

On the other hand, using Mathematica, we can expand (7.7) to get

z+(t, 0) = −1 +
t2

4
+

t4

48
− 7t6

2880
− 13t8

40320
+

137t10

14515200
+

19t12

6220800
+

2531t14

63402393600

− 82291t16

3804143616000
− 179107t18

166295420928000
+

1972291t20

17013300756480000
+ . . . ,

which coincides with our above analytical expansion.

7.2 Proof of Theorem 3.2
Here, we prove Theorem 3.2. We emphasize the fact that proof mainly follows
the idea in [15, Theorem 4.1].
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Proof. The existence part is quite standard so we sketch it and give empha-
sis to the proof of invertibility of D1F (x(ε), ε) for ε �= 0. Since F (ξ(μ), 0) = 0,
F (ξ(μ), 0) = 0 we get L(μ)ξ′(μ) = 0 and, differentiating twice,D2

1F (ξ(μ), 0) (ξ′(μ), ξ′(μ))+
L(μ)ξ′′(μ) = 0. As a consequence, ξ′(μ) ∈ NL(μ) and

D2
1F (ξ(μ), 0) (v, w) ∈ RL(μ) for any v, w ∈ NL(μ).

Let Π(μ) : Y → RL(μ) as in the statement of the theorem. We write x =
z + ξ(μ), with z ∈ NL(μ)⊥. Applying the Implicit Function Theorem to
the map (z, μ, ε) �→ Π(μ)F (z + ξ(μ), ε), (z, μ, ε) �→ Π(μ)F (z + ξ(μ), ε) we get
the existence of a unique C2−solution z = z(μ, ε) ∈ NL(μ)⊥ of the equation
Π(μ)F (z + ξ(μ), ε) = 0. From uniqueness, we obtain also

z(μ, 0) = 0.

Next, differentiating the equality Π(μ)F (z(μ, ε)+ ξ(μ), ε) = 0 with respect to μ
and to ε at (μ, 0), (μ, 0) we get:

Π(μ)L(μ)[zμ(μ, 0) + ξ′(μ)] = 0 ⇒ zμ(μ, 0) ∈ NL(μ);
Π(μ) [L(μ)zε(μ, 0) +D2F (ξ(μ), 0)] = 0 ⇒ L(μ)zε(μ, 0) = −Π(μ)D2F (ξ(μ), 0)

Next, for ε �= 0, equation [I − Π(μ)]F (z(μ, ε) + ξ(μ), ε) = 0 is equivalent to
ε−1[I − Π(μ)]F (z(μ, ε) + ξ(μ), ε) = 0, but the l.h.s. tends, for ε → 0 to [I −
Π(μ)]D2F (ξ(μ), 0) which gives the Poincaré-Melnikov condition. We conclude
that, if the Poincaré-Melnikov condition is satisfied, for ε �= 0 (small) there
exists a unique solution of equation F (x, ε) = 0, x = x(ε) = z(μ(ε), ε)+ξ(μ(ε)),
with μ(0) = 0.
Now we prove the invertibility of D1F (x(ε), ε). Since D1F (x(ε), ε) is Fredholm
with index zero, it is enough to prove that equation D1F (x(ε), ε)z = 0 has, for
ε �= 0, the unique solution z = 0. Although F(z, ε) := D1F (x(ε), ε)z is only
C1 with respect to ε, it is linear in z. Thus, we can still apply the existence
and uniqueness argument given above. Of course ,F(z, 0) vanishes on the linear

subspace M̃ := {z ∈ NL(0)}, M̃ := {z ∈ NL(0)} and clearly ND1F(z, 0) =

{z ∈ NL(0)}. Next RD1F(z, 0) = RL(0) so that Π̃(μ) = Π(0). Thus, from
the existence and uniqueness result it follows that ND1F (x(ε), ε) = {0} if the
following condition is satisfied:

z ∈ NL(0) and [I−Π(0)][D2
1F (0, 0)x′(0) +D1D2F (0, 0)]z = 0 ⇒ z = 0.

On account of x(ε) = z(μ(ε), ε) + ξ(μ(ε)) we are led to look at the solutions of

[I−Π(0)]
[
D2

1F (0, 0)(zμ(0, 0)μ
′(0) + zε(0, 0) + ξ′(0)μ′(0)) +D1D2F (0, 0)

]
z = 0

with z ∈ NL(0). From the previous remarks, we get:

D2
1F (0, 0)(zμ(0, 0)μ

′(0), z) ∈ RL(0) and D2
1F (0, 0)(ξ′(0)μ′(0), z) ∈ RL(0)

for any z ∈ NL(0), since zμ(0, 0)μ
′(0), ξ′(0)μ′(0) ∈ NL(0)). So, the claim to be

proved is :

[I−Π(0)]
[
D2

1F (0, 0)zε(0, 0) +D1D2F (0, 0)
]
ξ′(0) �= 0
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where we have replaced z with ξ′(0) since NL(0) = span{ξ′(0)}. Now we
differentiate the equality

L(μ)zε(μ, 0) = −Π(μ)D2F (ξ(μ), 0) = M(μ)−D2F (ξ(μ), 0)

with respect to μ at μ = 0 to get:

D2
1F (0, 0)zε(0, 0)ξ

′(0) + L(0)zεε(0, 0) = M′(0)−D1D2F (0, 0)ξ′(0).

Hence, :

[I−Π(0)]
[
D2

1F (0, 0)zε(0, 0) +D1D2F (0, 0)
]
ξ′(0) = [I−Π(0)]M′(0) �= 0

since, from [I − Π(μ)]M(μ) = M(μ) and M(0) = 0 we get [I − Π(0)]M′(0) =
M′(0). The proof of Theorem 3.2 is complete.
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5. Chua, LO, Komuro, M, Matsumoto, T: The double scroll family. IEEE
Trans. CAS 33, 1073-1118 (1986)

6. Fenichel, N: Geometric singular perturbation theory for ordinary differential
equations. J. Diff. Equ. 31, 53-98 (1979)

7. Gaines, E, Mawhin, J: Coincidence Degree, and Nonlinear Differential
Equations. Springer-Verlag, Berlin (1977)

8. Gradshteyn, IS, Ryzhik, IM: Table of Integrals, Series, and Products.
Academic Press, Boston (2007)

9. Ivanov, A: Bifurcations in impact systems. Chaos Sol. Frac. 7, 1615-1634
(1996)

10. Jones, C: Geometric Singular Perturbation Theory. C.I.M.E. Lectures,
Montecatini Terme 1994, in: Lec. Notes Math., vol. 1609. Springer-Verlag,
Heidelberg (1995)
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