- T. Isernia, Bmo regularity for asymptotic parabolic systems with linear growth, Differential Integral Equations 28 (2015), no. 11-12, 1173–1196.
- T. Isernia, C. Leone & A. Verde, Partial regularity results for asymptotic quasi-convex functionals with general growth, Ann. Acad. Sci. Fenn. Math. 41 (2016), 817–844.
- V. Ambrosio & T. Isernia, A multiplicity result for a fractional Kirchhoff equation in with a general nonlinearity, Commun. Contemp. Math. 20 (2018), no. 5, 1750054, 17 pp.
- T. Isernia, Positive solution for nonhomogeneous sublinear fractional equations in , Complex Var. Elliptic Equ. 63 (2018), no. 5, 689–714.
- V. Ambrosio & T. Isernia, Concentration phenomena for a fractional Schrödinger–Kirchhoff type equation, Math. Methods Appl. Sci. 41 (2018), no. 2, 615–645.
- V. Ambrosio & T. Isernia, Sign-changing solutions for a class of Schrödinger equations with vanishing potentials, Rend. Lincei Mat. Appl. 29 (2018), 127–152.
- T. Isernia, —regularity for a wide class of parabolic systems with general growth, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4741–4753.
- T. Isernia, Nonhomogeneous sublinear fractional Schrödinger equations, Two non-linear days in Urbino 2017. Electron. J. Diff. Eqns., Conf. 25 (2018), pp. 149–165.
- V. Ambrosio & T. Isernia, On a fractional Laplacian problem with critical Sobolev-Hardy exponents, Mediterr. J. Math. 15 (2018), no. 6, 15:219.
- V. Ambrosio & T. Isernia, Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional –Laplacian, Discrete Contin. Dyn. Syst. 38 (2018), no.11, 5835–5881.
- V. Ambrosio, T. Isernia & G. Siciliano, On a fractional Laplacian problem with critical growth, Minimax Theory Appl. 4 (2019), no.1, 1-9.
- V. Ambrosio, G. Figueiredo, T. Isernia & G. Molica Bisci, Sign-changing solutions for a class of zero mass nonlocal Schrödinger equations, Adv. Nonlinear Stud. 19 (2019), no. 1, 113–132.
- V. Ambrosio & T. Isernia, On the multiplicity and concentration for -fractional Schrödinger equations, Appl. Math. Lett. 95 (2019), 13-22.
- C.O. Alves, V. Ambrosio & T. Isernia, Existence, multiplicity and concentration for a class of fractional Laplacian problems in , Comm. Pura App. Anal. 18 (2019), no. 4, 2009–2045.
- V. Ambrosio, A. Fiscella & T. Isernia, Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems, Electron. J. Qual. Theory Differ. Equ. 2019, No. 25, 1-13.
- T. Isernia, On a nonhomogeneous sublinear-superlinear fractional equation in , Riv. Math. Univ. Parma (N.S.) 10 (2019), no.1, 167-186.
- V. Ambrosio, G.M. Figueiredo & T. Isernia, Existence and concentration of positive solutions for -fractional Schrödinger equations, accepted for publication on Ann. Mat. Pura Appl.
- S. Biagi & T. Isernia, On the solvability of singular boundary value problems on the real line in the critical growth case, accepted for publication on Discrete Contin. Dyn. Syst.
- T. Isernia, Sign-changing solutions for a fractional Kirchhoff equation, accepted for publication on Nonlinear Analysis.
- T. Isernia, Fractional -Laplacian problems with potentials vanishing at infinity, Opuscula Math. 40, no. 1 (2020), 93–110.
- V. Ambrosio, T. Isernia & V. Radulescu, Concentration of positive solutions for a class of fractional -Kirchhoff type equations, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 2, 601–651.
- V. Ambrosio & T. Isernia, Multiplicity of positive solutions for a fractional -Laplacian problem in , J. Math. Anal. Appl. 501 (2021), no. 1, 124487, 31 pp.
- T. Isernia & D. Repovs, Nodal solutions for double phase Kirchhoff problems with vanishing potentials, Asymptotic Analysis 1 (2020), 1–26.
- V. Ambrosio & T. Isernia, A multiplicity result for a -Schrödinger-Kirchhoff type equation, Ann. Mat. Pura Appl. (4) 201 (2022), no. 2, 943–984.
- T. Isernia, C. Leone & A. Verde, Partial regularity result for non-autonomous elliptic systems with general growth, Commun. Pure Appl. Anal. 20 (2021), no. 12, 4271–4305.
- T. Isernia, C. Leone & A. Verde, Partial Regularity for elliptic systems with critical growth, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 2, 271–296.
- V. Ambrosio & T. Isernia, The critical fractional Ambrosetti-Prodi problem, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 3, 1107–1132.
- M. Foss, T. Isernia, C. Leone & A. Verde, A-caloric approximation and partial regularity for parabolic systems with Orlicz growth, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 51, 39 pp.
- F. Anceschi & T. Isernia, partial regularity result for elliptic systems with discontinuous coefficients and Orlicz growth, J. Math. Anal. Appl. 530 (2024), no.1, Paper No.127628.