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Abstract

We study the asymptotic stability for solutions of the nonlinear damped Kirchhoff system, with homogeneous Dirichlet
boundary conditions, under fairly natural assumptions on the external force f and the distributed damping Q. Then the results
are extended to a more delicate problem involving also an internal dissipation of higher order, the so called strongly damped
Kirchhoff system. Finally, the study is further extended to strongly damped Kirchhoff–polyharmonic systems, which model several
interesting problems of the Woinowsky–Krieger type.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we first investigate the asymptotic behavior of solutions of the following problem involving a damped
nonlinear Kirchhoff wave system{

ut t − M(‖Du‖2)∆u + Q(t, x, u, ut )+ f (x, u) = 0 in R+0 × Ω ,
u(t, x) = 0 on R+0 × ∂Ω ,

(1.1)

where u = (u1, . . . , uN ) = u(t, x) is the vectorial displacement, N ≥ 1, R+0 = [0,∞), Ω is a bounded domain of
Rn , M is given by

M(τ ) = a + bγ τ γ−1, τ ≥ 0 (1.2)

with a, b ≥ 0, a + b > 0 and γ > 1, and ‖ · ‖ = ‖ · ‖[L2(Ω)]N . (The time interval R+0 can be replaced by any time
semi-line [T,∞), T > 0.)

System (1.1) is said to be non-degenerate when a > 0 and b ≥ 0, while degenerate when a = 0 and b > 0. When
a > 0 and b = 0, system (1.1) is the usual well-known semilinear wave system.
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Throughout the paper we assume

Q ∈ C(R+0 × Ω × RN
× RN

→ RN ), f ∈ C(Ω × RN
→ RN ).

The function Q, representing a nonlinear damping, is always assumed to verify

(Q(t, x, u, v), v) ≥ 0 for all arguments t, x, u, v, (1.3)

where (·, ·) is the inner product of RN . The most common suppressions of the vibrations of an elastic structure,
represented by Q, are of passive viscous type and absorb vibration energy.

The external force f is assumed to be derivable from a potential F , that is

f (x, u) = ∂u F(x, u), (1.4)

where F ∈ C1(Ω × RN
→ R+0 ) and F(x, 0) = 0. Moreover, we allow ( f (x, u), u) to take negative values, that is

( f (x, u), u) ≥ −aµ|u|2 in Ω × RN , (1.5)

for some µ ∈ [0, µ0), where µ0 denotes the first eigenvalue of −∆ in Ω , with zero Dirichlet boundary conditions.
When either µ = 0 or a = 0, that is when (1.1) is degenerate, then (1.5) reduces to the more familiar condition
( f (x, u), u) ≥ 0, namely f is of restoring type. Even if we are in the vectorial case, with N possibly greater than one,
we consider general dampings Q involving (1.3), see condition (AS) in Section 2 and also [15].

In the more delicate case in which n ≥ 3 and p > r , where r = 2n/(n − 2) denotes here the Sobolev exponent of
the space W 1,2

0 (Ω), a further natural growth condition is assumed on f , see Section 2.
In [16] global existence is proved without imposing any bound on the exponent p of the source term f , when

f does not depend on t as in our setting. This also justifies the importance to consider the case n ≥ 3 and p > r
for asymptotic stability. We refer the reader to [16] for a complete recent bibliography for wave equations also with
nonlinear dampings.

Problem (1.1) models several interesting phenomena studied in mathematical physics. In the case N = 1 and n = 1
problem (1.1) describes the nonlinear vibrations of an elastic string. The original equation is

%hut t −

{
po +

E h

2L

∫ L

0
|ux |

2dx

}
uxx + δut + f (x, u) = 0 (1.6)

for t ≥ 0 and 0 < x < L , where u = u(t, x) is the lateral displacement at the space coordinate x and the time t , E the
Young modulus, % the mass density, h the cross section area, L the length, p0 the initial axial tension, δ the resistance
modulus and f the external force, for which the existence of a potential F is redundant, since one can simply integrate
f (x, u) with respect to u. When δ = f = 0, Eq. (1.6) was first introduced by Kirchhoff [8]. Further details and
physical models described by Kirchhoff’s classical theory can be found in [18]. For a somewhat related approach in
the autonomous case, we refer to the paper [1], which is devoted to semilinear wave equations with linear damping.

A canonical example of (1.1), which we contemplate here, is given by the system in R+0 × Ω with

Q(t, x, v) = A1(t, x)|v|m−2v + A2(t, x)|v|q−2v, f (x, u) = V1(x)|u|
p̃−2u − V2(x)u,

p̃ > 1, 2 ≤ m < q ≤ max{ p̃, r} if n ≥ 3,
(1.7)

where A1, A2 ∈ C(R+0 × Ω → RN×N ) are semidefinite positive matrices, V1, V2 ∈ C(Ω → R+0 ), with
supΩ [V1(x) + V2(x)] < ∞, infΩ V1(x) > 0, and supΩ V2(x) ≤ aµ for some µ ∈ [0, µ0) – cf. Sections 2 and
6.

In the context of problem (1.1) the question of asymptotic stability is best considered by means of the natural
energy associated with the solutions of (1.1), namely

Eu(t) =
1
2

{∫
Ω

(
|ut (t, x)|2 + a|Du(t, x)|2

)
dx + b

(∫
Ω
|Du(t, x)|2dx

)γ}
+

∫
Ω

F(x, u(t, x))dx .

In particular the rest field u(t, x) ≡ 0 will be called asymptotically stable in the mean, or simply asymptotically stable,
if and only if

lim
t→∞

Eu(t) = 0 for all solutions u = u(t, x) of (1.1).
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In this formulation we have tacitly assumed that the solutions in question are classical, but for an adequate and useful
theory one must actually consider solutions in a wider class of functions.

Indeed, one of the goals of this paper is to formulate a rational definition of solution for (1.1) which is independent
of detailed properties of the functions f and Q, and at the same time provides a useful framework for the study of
asymptotic stability. This we do in Section 2. Section 3 is devoted to our main asymptotic stability result, Theorem 3.1,
which is based on the a priori existence of a suitable auxiliary function k = k(t), which was first introduced by Pucci
and Serrin in [13]. With appropriate choices of the function k we can obtain a number of useful special cases of
Theorem 3.1, see Section 6.

Further applications to more general problems than (1.1) are given in Sections 4 and 5. In particular, in Section 4
we study the most delicate problem{

ut t − M(‖Du‖2)∆(u + %(t)ut )+ Q(t, x, u, ut )+ f (x, u) = 0 in R+0 × Ω ,
u(t, x) = 0 on R+0 × ∂Ω ,

(1.8)

where % ∈ L1
loc(R

+

0 → R+0 ), which involves higher dissipation terms very interesting from an applicative point
of view and of course includes the model (1.1) when % ≡ 0, that is no higher dissipation terms are involved.
Indeed, the expression a∆(%(t)ut ), involved in the second term of (1.8), represents the internal material damping
of Kelvin–Voigt type of the body structure. For a detailed physical discussion the reader is referred to [12,7]
as well as the references therein. However, it is worth noting that, in addition to the distributed damping Q, an
internal damping mechanism is always present, even if small, in real materials as long as the system vibrates,
see [6, Chapter 4, Dynamical Mechanical Properties, page 73]. For a further physical discussion on the common use
in nonlinear acoustics, as well as in several other natural and industrial applications, of the dissipation higher-order
term a∆(%(t)ut ), similar to the classical stress tensor describing a Stokesian fluid, we refer to [4]. Finally, we
mention [3] for a model describing nonlinear viscoelastic materials with short memory in the special scalar case
of (1.8), when % ≡ 1, Q ≡ 0 and f ≡ 0.

In Section 5 we extend the study of Section 3 to the strongly damped Kirchhoff-polyharmonic systems in R+0 ×Ω

ut t + (−∆)L(%(t)ut )+ M(‖DLu‖2)(−∆)Lu + Q(t, x, u, ut )+ f (x, u) = 0, L ≥ 1, (1.9)

which includes the model (1.1) when L = 1 and % ≡ 0, and when L ≥ 2

ut t + (−∆)L(u + %(t)ut )+ M(‖DL−1u‖2)(−∆)L−1u + Q(t, x, u, ut )+ f (x, u) = 0, (1.10)

both under the Dirichlet boundary conditions on R+0 × ∂Ω

u(t, x) = 0, Du(t, x) = 0, . . . , D2(L−1)u(t, x) = 0, (1.11)

where as above % ∈ L1
loc(R

+

0 → R+0 ), M is given in (1.2),

DLu =

{
D∆ j u if L = 2 j + 1
∆ j u if L = 2 j

and n > 2L . (1.12)

When 1 < p ≤ r = 2n/(n − 2L), for the system (1.9) the source term f is assumed to satisfy the corresponding
condition (1.5), where now µ0 denotes the first eigenvalue of (−∆)L in Ω , with zero Dirichlet boundary conditions,
while for (1.10) it verifies

( f (x, u), u) ≥ −µ|u|2 in Ω × RN , (1.13)

again for some µ ∈ [0, µ0). Finally, when p > r for both systems f is assumed as before to satisfy a further growth
condition.

When L = 2 problems (1.9) and (1.10) are largely studied in the literature in several simplified subcases. However,
the original physical models governed by (1.9) and (1.10) are vibrating beams of the Woinowsky–Krieger type, with
internal material damping term of the Kelvin–Voigt type and a nonlinear damping Q effective in Ω .

The special brief Section 6 is devoted to simple consequences of the main results, which apply in the usual subcases
of the systems considered here and somehow clarify the key asymptotic assumptions on the auxiliary function k. Even
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the special cases considered in Section 6 extend in several directions the most recent asymptotic stability results for
damped systems, cf. i.e. [5,9,17] and also [2].

The primary consideration of this paper is the asymptotic stability of solutions of (1.1) and (1.8)–(1.10). Here we
follow the approach of Pucci and Serrin in [13–15], where the authors treated the same subject for damped wave
systems. Accordingly, we shall not be concerned with the problem of existence of solutions, which many authors
have studied in some particular special cases. See, for example, [10,11] and the references cited therein. The reader is
referred to this literature for further details.

2. Preliminaries

We first introduce the elementary bracket pairing in Ω ⊂ Rn ,

〈ϕ,ψ〉 ≡

∫
Ω
(ϕ, ψ)dx,

provided that (ϕ, ψ) ∈ L1(Ω). We consider for simplicity

Lρ(Ω) = [Lρ(Ω)]N , X = [W 1,2
0 (Ω)]N ,

where ρ > 1, these spaces being endowed respectively with the natural norms

‖ϕ‖ρ =

(∫
Ω
|ϕ|ρ

)1/ρ

, ‖Dϕ‖ =

(∫
Ω
|Dϕ|2dx

)1/2

=

(∫
Ω

n∑
i=1

|Diϕ|
2dx

)1/2

.

We also put

〈Dϕ, Dψ〉 =
∫
Ω

n∑
i=1

(Diϕ, Diψ)dx for all ϕ,ψ ∈ X,

so in particular 〈Dϕ, Dϕ〉 = ‖Dϕ‖2. Now define

K ′ = C(R+0 → X) ∩ C1(R+0 → L2(Ω)) and K = {φ ∈ K ′ : Eφ is locally bounded on R+0 },

where Eφ is the total energy of the field φ, that is

Eφ = Eφ(t) =
1
2

(
‖φt‖

2
+ a‖Dφ‖2 + b‖Dφ‖2γ

)
+Fφ,

and Fφ, the potential energy of the field, is given by

Fφ = Fφ(t) =
∫
Ω

F(x, φ(t, x))dx .

In writing Eφ and Fφ we make the tacit agreement that Fφ is well-defined, namely that F(·, φ(t, ·)) ∈ L1(Ω)
for all t ∈ R+0 .

Since φ ∈ K the quantities φt , Dφ(t) ∈ L2(Ω) for each t ∈ R+0 . Of course ‖φt‖, ‖Dφ‖ ∈ L∞loc(R
+

0 ), being
continuous functions of t , so that Eφ is locally bounded on R+0 if and only if Fφ ∈ L∞loc(R

+

0 ). Hence an equivalent
definition of K is given by

K = {φ ∈ K ′ : Fφ is locally bounded on R+0 }. (2.1)

Our motivation for introducing the set K is that a solution of (1.1) should, whatever else, be sought in a function
space for which the total energy is well-defined and bounded on any finite interval, and K has just this property.

The definition of K moreover applies without reference to the external force condition (1.5), so that the definition
of solution given below applies equally whether f satisfies (1.5) or not. Of course f must be derivable from a potential
as in (1.4).

We can now give our principal definition: a strong solution of (1.1) is a function u ∈ K satisfying the following
two conditions:
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(A) Distribution identity

〈ut , φ〉]
t
0 =

∫ t

0
{〈ut , φt 〉 − M(‖Du‖2)〈Du, Dφ〉 − 〈Q(τ, ·, u, ut ), φ〉 − 〈 f (·, u), φ〉}dτ

for all t ∈ R+0 and φ ∈ K .
(B) Conservation law

(i) Du := 〈Q(t, ·, u, ut ), ut 〉 ∈ L1
loc(R

+

0 ),

(ii) t 7→ Eu(t)+
∫ t

0
Du(τ )dτ is non-increasing in R+0 .

We emphasize that condition (B) is an essential attribute of solution. Indeed, standard existence theorems for (1.1)
in the literature always yield solutions satisfying both (A) and (B) in the stronger form in which the function in (B)-(ii)
is assumed to be constant. On the other hand (A) alone does not imply (B), even if the integrability condition (B)-(i)
is assumed a priori (see [19]). Conditions (B)-(ii) and (1.3) imply, however, that Eu is non-increasing in R+0 .

A remaining issue is to determine a category of functions f and Q for which the preceding definition is meaningful.
In particular, it must be shown that

〈 f (·, u), φ(t, ·)〉, 〈Q(t, ·, u, ut ), φ(t, ·)〉 ∈ L1
loc(R

+

0 ), (2.2)

so that the right-hand integral in identity (A) will be well-defined. To obtain (2.2) observe first that if u, φ ∈ K , then

u, φ ∈ C(R+0 → Lr (Ω)), (2.3)

where r = 2n/(n − 2) is the Sobolev exponent for the space X (or r is any real number satisfying r > 2 if n = 1, 2,
because Ω is bounded).

We make the following natural hypotheses on f and Q, in the principal case n ≥ 2

(H) Conditions (1.4) and (1.5) hold and there exists an exponent p ≥ 2 such that

(a) | f (x, u)| ≤ Const. (1+ |u|p−1) for all (x, u) ∈ Ω × RN .

Moreover, if n ≥ 3 and p > r , f verifies (a) and

(b) ( f (x, u), u) ≥ κ1|u|
p
− κ2|u|

1/p
− κ3|u|

r for all (x, u) ∈ Ω × RN

for appropriate constants κ1 > 0, κ2, κ3 ≥ 0.

When f ≡ 0 then (H)-(a) holds for any fixed p ∈ [2, r), so that (H)-(b) is unnecessary. Moreover, whenever n = 1
or n = 2, we fix r as any real number with r > p, so that again (H)-(b) is unnecessary.

(AS) Condition (1.3) holds and there are exponents m, q satisfying

2 ≤ m < q ≤ s, s = max{p, r}, while s = ∞ if n = 2,

where m′ and q ′ are the Hölder conjugates of m and q , and non-negative continuous functions d1 = d1(t, x),
d2 = d2(t, x), such that for all arguments t, x, u, v,

(a) |Q(t, x, u, v)| ≤ d1(t, x)1/m(Q(t, x, u, v), v)1/m′
+ d2(t, x)1/q(Q(t, x, u, v), v)1/q

′

,

and the following functions δ1 and δ2 are well-defined

δ1(t) = ‖d1(t, ·)‖s/(s−m), δ2(t) =

{
‖d2(t, ·)‖s/(s−q), if q < s,
‖d2(t, ·)‖∞, if q = s.

Moreover, there are functions σ = σ(t), ω = ω(τ) such that

(b) (Q(t, x, u, v), v) ≥ σ(t)ω(|v|) for all arguments t, x, u, v,

where ω ∈ C(R+0 → R+0 ) is such that

ω(0) = 0, ω(τ) > 0 for 0 < τ < 1, ω(τ) = τ 2 for τ ≥ 1,

while σ ≥ 0 and σ 1−℘
∈ L1

loc(R
+

0 ) for some exponent ℘ > 1.
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When f ≡ 0, by the above remark it is necessary to take s = r in (AS). This simplifies the proofs of the main lemmas,
since in this case K = K ′.

It is worth observing that f in (1.7), with p̃ > 1, V1, V2 ∈ C(Ω → R+0 ), with supΩ [V1(x) + V2(x)] < ∞, and
supΩ V2(x) ≤ aµ for some µ ∈ [0, µ0), satisfies (1.5). Moreover, (H)-(a) holds with p = 2 when 1 < p̃ < 2, while
with p = p̃ when p̃ ≥ 2. When n ≥ 3 and p̃ > r , then f verifies (H)-(b) again with p = p̃, κ2 = κ3 = supΩ V2(x),
provided that infΩ V1(x) =: κ1 > 0.

While the damping function Q(t, x, v) = d1(t, x)|v|m−2v + d2(t, x)|v|q−2v, d1, d2 ∈ C(R+0 × Ω → R+0 ), with
m, q , d1, d2 as in (AS), satisfies (AS)-(a). For the proof see Section 2 of [15]. Furthermore, (AS)-(b) holds with
ω(τ) = τ q for τ ∈ [0, 1], ω(τ) = τ 2 for τ ≥ 1, and σ(t) = infΩ {d1(t, x) + d2(t, x)}, provided that it is assumed
σ 1−℘

∈ L1
loc(R

+

0 ) for some ℘ > 1. For more general Q see Section 6.
The conditions (2.2) are consequences of the assumptions (H) and (AS). Indeed, by (H)-(a) for all u, φ ∈ K

|〈 f (·, u), φ(t, ·)〉| ≤ Const.(‖φ‖1 + ‖u‖
p−1
p · ‖φ‖p),

so that 〈 f (·, u), φ(t, ·)〉 is locally bounded on R+0 , whenever u, φ ∈ K , since ‖ · ‖p of any function of K is locally
bounded in R+0 either by the Sobolev embedding theorem when 1 < p ≤ r or by the main assumption (H)-(b) when
p > r and n ≥ 3. Indeed, in the latter case for all u ∈ K

F(x, u) =
∫ 1

0
( f (x, τu), u)dτ ≥

∫ 1

0
(κ1|u|

pτ p−1
− κ2|u|

1/pτ−1/p′
− κ3|u|

rτ r−1)dτ

=
κ1

p
|u|p − pκ2|u|

1/p
−
κ3

r
|u|r ,

and, since κ1 > 0, we then have

‖u(t, ·)‖p
p ≤

p

κ1

(
Fu(t)+ pκ2|Ω |1/p′

‖u(t, ·)‖1/p
1 +

κ3

r
‖u(t, ·)‖r

)
. (2.4)

Therefore also ‖u‖p ∈ L∞loc(R
+

0 ), since Fu is locally bounded by the definition of K and u ∈ X . This completes the
proof of the claim in the case p > r and n ≥ 3.

Moreover

〈Q(t, ·, u, ut ), φ(t, ·)〉 ∈ L1
loc(R

+

0 ), (2.5)

since δ1, δ2 ∈ L1
loc(R

+

0 ) by (AS)-(a) and Du ∈ L1
loc(R

+

0 ) by (B)-(i), see Section 2 of [15]. Thus (2.2) holds and so the
distribution identity (A) is well-defined.

Finally, if either 1 < p ≤ r or n = 2 in (H), then K = K ′, since φ ∈ C(R+0 → L p(Ω)), see Section 2 of [14]. The
case n = 1 will be treated at the end of Sections 3 and 4.

3. Asymptotic stability for damped nonlinear Kirchhoff systems

We recall that in what follows µ0 is the first eigenvalue of −∆ in Ω , with zero Dirichlet boundary conditions.

Theorem 3.1. Let (H) and (AS) hold. Suppose there exists a function k satisfying either

k ∈ C BV (R+0 → R+0 ) and k 6∈ L1(R+0 ) or, (3.1)

k ∈ W 1,1
loc (R

+

0 → R+0 ), k 6≡ 0 and lim
t→∞

∫ t
0 |k
′(τ )|dτ∫ t

0 k(τ )dτ
= 0. (3.2)

Assume finally

lim inf
t→∞

A (k(t))

(∫ t

0
k(τ )dτ

)−1

<∞, (3.3)

where

A (k(t)) = B(k(t))+

(∫ t

0
σ 1−℘k℘dτ

)1/℘

, B(k(t)) =

(∫ t

0
δ1kmdτ

)1/m

+

(∫ t

0
δ2kqdτ

)1/q

. (3.4)
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Then along any strong solution u of (1.1) we have

lim
t→∞

Eu(t) = 0 and lim
t→∞

(‖ut‖ + ‖Du‖) = 0. (3.5)

The integral condition (3.3) prevents the damping term Q being either too small (underdamping) or too large
(overdamping) as t →∞ and was introduced by Pucci and Serrin in [15], see also [13].

When N = 1, or Q is tame, that is

(T ) Q is tame, if there exists κ ≥ 1 such that

|Q(t, x, u, v)| · |v| ≤ κ(Q(t, x, u, v), v) (automatic if N = 1),

then condition (AS)-(a) is equivalent to

|Q(t, x, u, v)| ≤ Const. {d1(t, x)|v|m−1
+ d2(t, x)|v|q−1

}

(this can be proved exactly as in Remark 1 of Section 5 in [15]).
Before proving Theorem 3.1 we give two preliminary lemmas under conditions (H) and (AS)-(a) which make the

definition of strong solution meaningful.

Lemma 3.2. Let u be a strong solution of (1.1). Then the non-increasing energy function Eu verifies in R+0

Eu ≥
1
2
‖ut‖

2
+

a

2

(
1−

µ

µ0

)
‖Du‖2 +

b

2
‖Du‖2γ ≥ 0. (3.6)

Moreover

‖ut‖, ‖Du‖, ‖u‖p, ‖u‖r ,M(‖Du‖2) ∈ L∞(R+0 ), Du = 〈Q(t, x, u, ut ), ut 〉 ∈ L1(R+0 ). (3.7)

Proof. By (1.5) we have F(x, u) ≥ −aµ|u|2/2, so that Fu(t) ≥ −aµ‖u(t, ·)‖2/2. Hence by the definition of E and
the fact that b ≥ 0

Eu ≥
1
2
‖ut‖

2
+

1
2

a‖Du‖2 −
1
2

aµ‖u‖2 +
1
2

b‖Du‖2γ ,

so (3.6) follows at once by Poincaré’s inequality.
The proof of the fact that ‖ut‖, ‖Du‖, ‖u‖r ∈ L∞(R+0 ) and Du ∈ L1(R+0 ) is exactly as for Lemma 3.1 of [15].

Clearly when p ≤ r then also ‖u‖p ∈ L∞(R+0 ). While if n ≥ 3 and p > r , using (H)-(b) we get (2.4) since u ∈ K .
Therefore also ‖u‖p ∈ L∞(R+0 ), since Fu is bounded above – actually also below by (1.5) – being Eu(t) ≤ Eu(0)
and ‖ut‖, ‖Du‖ ∈ L∞(R+0 ), and in turn also M(‖Du‖2) ∈ L∞(R+0 ). This completes the proof of (3.7). �

By (B)-(ii) and Lemma 3.2 it is clear that there exists l ≥ 0 such that

lim
t→∞

Eu(t) = l. (3.8)

Lemma 3.3. Let u be a strong solution of (1.1) and suppose l > 0 in (3.8). Then there exists a constant α = α(l) > 0
such that on R+0

‖ut‖
2
+ a‖Du‖2 + b‖Du‖2γ + 〈 f (·, u), u〉 ≥ α. (3.9)

Proof. The proof relies on the principal ideas used for proving [14, Lemma 3.4] and [15, Lemma 3.4]. Since Eu(t) ≥ l
for all t ∈ R+0 it follows that

‖ut‖
2
+ a‖Du‖2 + b‖Du‖2γ ≥ 2(l −Fu) on R+0 .

Let

J1 = {t ∈ R+0 : Fu(t) ≤ l/2}, J2 = {t ∈ R+0 : Fu(t) > l/2}.
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For t ∈ J1

‖ut‖
2
+ a‖Du‖2 + b‖Du‖2γ ≥ l. (3.10)

Denoting by L u the left-hand side of (3.9), we find, using (1.5) and (3.10), that in J1

L u ≥ a

(
1−

µ

µ0

)
‖Du‖2 + ‖ut‖

2
+ b‖Du‖2γ ≥

(
1−

µ

µ0

)
l +

µ

µ0
(‖ut‖

2
+ b‖Du‖2γ )

≥

(
1−

µ

µ0

)
l.

Before dividing the proof into two parts, we observe that

|Fu| ≤ C1(‖u‖1 + ‖u‖
p
p) (3.11)

by (H)-(a), see [15]. Now we denote with λρ the Sobolev constant of the embedding W 1,2
0 (Ω) ↪→ Lρ(Ω), for all

1 ≤ ρ ≤ r , that is,

‖u‖ρ ≤ λρ‖Du‖, (3.12)

where λρ = λr |Ω |1/ρ−1/r and depends on n, ρ, |Ω |.
Case 1. p ≤ r . By (3.11) and (3.12) we have |Fu| ≤ C(‖Du‖ + ‖Du‖p), consequently in J2

1
2 l < Fu(t) ≤ 2C

{
‖Du(t, ·)‖, if ‖Du(t, ·)‖ ≤ 1,
‖Du(t, ·)‖p, if ‖Du(t, ·)‖ > 1,

(3.13)

for an appropriate constant C > 0, depending on C1 given in (3.11), λ1, λp introduced in (3.12) and p. Hence

‖Du(t, ·)‖ ≥ min

{
l

4C
,

(
l

4C

)1/p
}
= C2(l) > 0,

and in J2

L u ≥ a

(
1−

µ

µ0

)
C2

2(l)+ bC2γ
2 (l).

Therefore (3.9) holds with

α = α(l) =

(
1−

µ

µ0

)
min{l, aC2

2(l)} + bC2γ
2 (l) > 0,

provided that either a 6= 0 or J2 6= ∅, being a + b > 0.
Now, if a = 0 and J2 = ∅, then (1.5) reduces to ( f (x, u), u) ≥ 0, and so (3.9) holds with α = l > 0.

Case 2. n ≥ 3 and p > r . Using (3.11), (H)-(b) and Hölder’s inequality, we have for t ∈ J2

l

2
< Fu(t) ≤ C1(‖u(t, ·)‖1 + ‖u(t, ·)‖

p
p)

≤ c0

(
〈 f (·, u(t, ·)), u(t, ·)〉 + κ1‖u(t, ·)‖1 + κ2|Ω |1/p′

‖u(t, ·)‖1/p
1 + κ3‖u(t, ·)‖

r
r

)
,

where c0 = C1/κ1, since κ1 > 0. But ‖u‖1 ≤ |Ω |1/r ′
‖u‖r ≤ λr |Ω |1/r ′

‖Du‖ by (3.12) and Hölder’s inequality.
Therefore, by (3.12)

〈 f (·, u), u〉 + c1‖Du‖ + c2‖Du‖1/p
+ c3‖Du‖r > l/2c0,

where c1 = κ1λr |Ω |1/r ′ , c2 = κ2λ
1/p
r |Ω |1−1/pr

≥ 0 and c3 = κ3λ
r
r ≥ 0. Hence for t ∈ J2 and 〈 f (·, u(t, ·)), u(t, ·)〉 ≥

0, then

either 〈 f (·, u(t, ·)), u(t, ·)〉 ≥ l/4c0 or ‖Du(t, ·)‖ ≥ c4, (3.14)
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where c4 = c4(l, c0) > 0 is an appropriate constant, arising when c1‖Du‖+ c2‖Du‖1/p
+ c3‖Du‖r ≥ l/4c0. On the

other hand, if t ∈ J2 and 〈 f (·, u(t, ·)), u(t, ·)〉 < 0, then ‖Du(t, ·)‖ ≥ c5, where c5 ≥ c4 is an appropriate number
arising from c1‖Du‖ + c2‖Du‖1/p

+ c3‖Du‖r > l/2c0. By (1.5) the conclusion (3.9) holds, with

α = min
{
(1− µ/µ0)l, a(1− µ/µ0)c

2
5 + bc2γ

5 , ac2
4 + bc2γ

4 , l/4c0

}
> 0,

since l > 0, µ ∈ [0, µ0), c0 > 0, c5 ≥ c4 > 0, and a + b > 0. This completes the proof. �

Proof of Theorem 3.1. Following the main ideas of the proof of [14, Theorem 3.1] and [15, Theorem 1], first we
treat case (3.1) in the simpler situation in which k is not only C BV (R+0 ), but also of class C1(R+0 ). Suppose, for
contradiction that l > 0 in (3.8). Define a second Lyapunov function by

V (t) = k(t)〈u, ut 〉 = 〈ut , φ〉, φ = k(t)u.

Since k ∈ C1(R+0 ) and φt = k′u + kut , it is clear that φ ∈ K . Hence, by the distribution identity (A) in Section 2, we
have for any t ≥ T ≥ 0

V (τ )]tT =
∫ t

T
{k′〈u, ut 〉 + 2k‖ut‖

2
− k[‖ut‖

2
+ M(‖Du‖2)‖Du‖2 + 〈 f (·, u), u〉]}dτ

−

∫ t

T
k〈Q(τ, ·, u, ut ), u〉dτ.

(3.15)

We now estimate the right-hand side of (3.15). First

sup
R+0
|〈u(t, ·), ut (t, ·)〉| ≤ sup

R+0
‖u(t, ·)‖ · ‖ut (t, ·)‖ = U <∞ (3.16)

by (3.7) of Lemma 3.2. Now, using Lemma 3.3

−

∫ t

T
k{‖ut‖

2
+ M(‖Du‖2)‖Du‖2 + 〈 f (·, u), u〉}dτ ≤ −α

∫ t

T
kdτ, (3.17)

and by Lemmas 3.2 and 3.3 of [15]

−

∫ t

T
k〈Q(τ, ·, u, ut ), u〉dτ ≤ ε1(T )B(k(t)), (3.18)∫ t

T
k‖ut‖

2dτ ≤ θ
∫ t

T
kdτ + ε2(T )C(θ)

(∫ t

0
σ 1−℘k℘dτ

)1/℘

, (3.19)

where C(θ) = ω1/℘′

θ , ωθ = sup{τ 2/ω(τ) : τ ≥
√
θ/|Ω |},

ε1(T ) =

sup
R+0
‖u(t, ·)‖s

 · [(∫ ∞
T

Du(τ )dτ
)1/m′

+

(∫
∞

T
Du(τ )dτ

)1/q ′
]
, (3.20)

and

ε2(T ) =

sup
R+0
‖ut (t, ·)‖

2/℘

 · (∫ ∞
T

Du(τ )dτ
)1/℘′

, (3.21)

with ε1(T ) = o(1) and ε2(T ) = o(1) as T →∞ by (3.7) of Lemma 3.2. Thus, by (3.15) it follows that

V (τ )]tT ≤ U
∫ t

T
|k′|dτ + 2θ

∫ t

T
kdτ + 2ε(T )C(θ)

(∫ t

0
σ 1−℘k℘dτ

)1/℘

− α

∫ t

T
kdτ + ε(T )B(k(t)),

where ε(T ) = max{ε1(T ), ε2(T )}. By (3.3) there is a sequence ti ↗∞ and a number ` > 0 such that

A (k(ti )) ≤ `
∫ ti

0
kdτ. (3.22)
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Choose θ = θ(l) = α/4 and fix T > 0 sufficiently large so that

ε(T )[2C(θ)+ 1]` ≤ α/4, (3.23)

being ε(T ) = o(1) as T →∞. Consequently, for ti ≥ T ,

V (ti ) ≤ U
∫ ti

T
|k′|dτ + S(T )−

α

4

∫ ti

T
kdτ, (3.24)

where S(T ) = V (T )+ ε(T )[2C(θ)+ 1]`
∫ T

0 kdτ . Thus by (3.1) we get

lim
i→∞

V (ti ) = −∞, (3.25)

since k′ ∈ L1(R+0 ) being k ∈ C BV (R+0 ). On the other hand, by (3.16) and recalling that k is bounded,

|V (t)| ≤

sup
R+0

k

 ‖u(t, ·)‖ · ‖ut (t, ·)‖ ≤

sup
R+0

k

U for all t ∈ R+0 .

This contradiction completes the first part of the proof.

We pass to the general case k ∈ C BV (R+0 ) but not k ∈ C1(R+0 ), following Lemma A in [13]. Let k ∈ C1(R+0 ) and
G ⊂ R+0 be an open subset such that

(i) 2k ≥ k ≥

{
k in R+0 \ G
0 in G

; (ii) Var k ≤ 2Var k; (iii)
∫

G
kds ≤ 1.

Clearly k ∈ C BV (R+0 ) by (ii). We next prove that k satisfies (3.1) and (3.3). Note that since k 6∈ L1(R+0 ) it is possible
to find a value T1 such that∫ T1

0
kdτ ≥ 2. (3.26)

Considering t ≥ T1, by (i), (ii) and (3.26) we obtain∫ t

0
kdτ ≥

∫
[0,t]\G

kdτ ≥
∫ t

0
kdτ −

∫
G

kdτ ≥
∫ t

0
kdτ − 1 ≥

1
2

∫ t

0
kdτ. (3.27)

Hence k satisfies (3.1). Moreover, by (i) and (3.27), for all t ≥ T1

A (k(t))
∫ t

0
kdτ ≤ 4A (k(t))

∫ t

0
kdτ,

where k 7→ A (k) is defined in (3.4). This shows that k also satisfies (3.3).
The general case is therefore reduced to the situation when k is smooth, and the proof is complete in case (3.1).
If k verifies (3.2) we again proceed by contradiction, supposing l > 0 in (3.8) and defining the auxiliary function

V (t) = k(t)〈u, ut 〉 = 〈ut , φ〉 as in the case (3.1). Now we observe that by (3.2) we still obtain φt = k′u+ kut , so that
φ ∈ K . Since Lemmas 3.2 and 3.3 continue to hold also in this setting, as well as Lemmas 3.2 and 3.3 of [15], from
now on we follow the proof of case (3.1) until obtaining (3.24). By the definition of V we now get

|V (ti )| ≤ Uk(ti ) ≤ U

{
k(0)+

∫ ti

0
|k′|dτ

}
,

so that by (3.24)

α

4

∫ ti

0
kdτ ≤ 2U

∫ ti

0
|k′|dτ + S(T )+Uk(0). (3.28)

Dividing (3.28) by
∫ ti

0 kdτ , using (3.2) and the fact that k 6∈ L1(R+0 ) by (3.2), we obtain again a contradiction letting
i →∞. Obviously condition (3.5)2 follows immediately from (3.6). �
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Corollary 3.4. Let (H) and (AS) hold. Suppose that any one of the following conditions is satisfied:

(a) σ ∈ C BV (R+0 ) \ L1(R+0 ), σm−1δ1 + σ
q−1δ2 ∈ L∞(R+0 );

(b) δ
1/(1−m)
1 ∈ C BV (R+0 ) \ L1(R+0 ), ℘ = m, σ 1−m/δ1, δ2δ

(q−1)/(1−m)
1 ∈ L∞(R+0 );

(c) δ
1/(1−q)
2 ∈ C BV (R+0 ) \ L1(R+0 ), ℘ = q, σ 1−q/δ2, δ1δ

(m−1)/(1−q)
2 ∈ L∞(R+0 );

(d) (δ1 + σ
1−m)1/(1−m)

∈ C BV (R+0 ) \ L1(R+0 ), ℘ = m, δ2(δ1 + σ
1−m)(q−1)/(1−m)

∈ L∞(R+0 );

(e) (δ2 + σ
1−q)1/(1−q)

∈ C BV (R+0 ) \ L1(R+0 ), ℘ = q, δ1(δ2 + σ
1−q)(m−1)/(1−q)

∈ L∞(R+0 ).

Then the assertion of Theorem 3.1 holds.

Proof. It is enough to take in each case, respectively,

k = σ, k = δ1/(1−m)
1 , k = δ1/(1−q)

2 , k = (δ1 + σ
1−m)1/(1−m), k = (δ2 + σ

1−q)1/(1−q),

and find that (3.1) and (3.3) are satisfied. �

The case n = 1
When n = 1 we have K = K ′. Furthermore, assumptions (H) and (AS) can be weakened respectively to

(H)′ | f (x, u)| ≤ g(u), g ∈ C(RN
→ R+0 ),

for all (x, u) ∈ Ω × RN .

(AS)′ Let (AS) be satisfied,with δ1(t) = ‖d1(t, ·)‖1 and δ2(t) = ‖d2(t, ·)‖1.

Clearly, (H)′ holds whenever f ∈ C(Ω×RN
→ R), or f does not depend on x . The above choice for the functions

δ1 and δ2 in (AS)′ is justified by the fact that r can be taken arbitrarily large when n = 1.
The next lemma will let the definition of strong solution meaningful.

Lemma 3.5. Let (H)′ and (AS)′ hold. Then for all u, φ ∈ K and t ∈ R+0 it results in Fφ well-defined and locally
bounded in R+0 , and

|〈 f (·, u), φ(t, ·)〉| ≤ c1‖φ(t, ·)‖L∞(Ω),

where c1 = c1(t) = |Ω | supw∈B(t) g(w), and B is defined by B(t) = {w ∈ RN
: |w| ≤ ‖u(t, ·)‖L∞(Ω)}. Moreover,

〈 f (·, u), φ(t, ·)〉 ∈ L∞loc(R
+

0 ) and 〈Q(t, ·, u, ut ), φ(t, ·)〉 ∈ L1
loc(R

+

0 ).

Proof. The proof of the first part of the lemma is given in Section 2 of [15], noting that for all φ ∈ K

‖φ(t, ·)‖∞ ≤
√
|Ω |/2 · ‖Dφ(t, ·)‖ ∈ C(R+0 ),

and so 〈 f (·, u), φ(t, ·)〉 is locally bounded on R+0 , since c1 is locally bounded on R+0 . To see that
〈Q(t, ·, u, ut ), φ(t, ·)〉 ∈ L1

loc(R
+

0 ) we first note that by Hölder’s inequality and (AS)′

‖Q(t, ·, u, ut )‖1 ≤ ‖d1(t, ·)
1/m(Q(t, ·, u, ut ), ut )

1/m′
‖1 + ‖d2(t, ·)

1/q(Q(t, ·, u, ut ), ut )
1/q ′
‖1

≤ δ
1/m
1 Du1/m′

+ δ
1/q
2 Du1/q ′

so that again by Hölder’s inequality and the fact that ‖φ(t, ·)‖∞ ∈ L1
loc(R

+

0 ) for all t ∈ R+0∫ t

0
|〈Q(τ, ·, u, ut ), φ(τ, ·)〉|dτ ≤ max

τ∈[0,t]
‖φ(τ, ·)‖∞

[(∫ t

0
δ1(τ )dτ

)1/m (∫ t

0
Du(τ )dτ

)1/m′

+

(∫ t

0
δ2(τ )dτ

)1/q (∫ t

0
Du(τ )dτ

)1/q ′
]
,

which completes the proof. �
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Theorem 3.6 (The Case n = 1). Assume (H)′ and (AS)′. Suppose that there exists a function k as in Theorem 3.1.
Then along any strong solution u of (1.1) property (3.5) holds.

Proof. Note first that Lemma 3.2 holds, where now in (3.7) the norm ‖·‖r is replaced by ‖·‖∞. Moreover, Lemma 3.3
is clearly valid, with a simplified proof, where (3.11) is replaced by |Fu(t, ·)| ≤ c‖u(t, ·)‖1, for some appropriate
constant c > 0, and so (3.13) by |Fu(t, ·)| ≤ C‖Du(t, ·)‖, again for some appropriate constant C > 0. Finally, (3.9)
holds with

α = α(l) = (1− µ/µ0)min{l, a(l/2C)2} + b(l/2C)2γ > 0.

The proof of asymptotic stability is now exactly the same as before taking into account Lemma 3.5. �

4. Kirchhoff higher-order damping terms

In this section we consider the more delicate system (1.8), where % ∈ L1
loc(R

+

0 → R+0 ), and take

X =
[
W 1,2

0 (Ω)
]N
, K ′ = C1(R+0 → X),

and K in the usual way as in (2.1). Moreover, again

Eφ = Eφ(t) =
1
2

(
‖φt‖

2
+ a‖Dφ‖2 + b‖Dφ‖2γ

)
+Fφ.

By a strong solution of (1.8) we mean a function u ∈ K satisfying the following two conditions

(A) Distribution identity for all t ∈ R+0 and φ ∈ K

〈ut , φ〉]
t
0 =

∫ t

0
{〈ut , φt 〉 − M(‖Du‖2)〈Du, Dφ〉 − %(τ)M(‖Du‖2)〈Dut , Dφ〉

− 〈Q(τ, ·, u, ut ), φ〉 − 〈 f (·, u), φ〉}dτ.

(B) Conservation Law

(i) Du := 〈Q(t, ·, u, ut ), ut 〉 ∈ L1
loc(R

+

0 ),

(ii) t 7→ Eu(t)+
∫ t

0
{Du(τ )+ %(τ)M(‖Du‖2)‖Dut‖

2
}dτ is non-increasing in R+0 .

It is easy to see that this definition is meaningful when hypotheses (H) and (AS)-(a) hold. Also in this new context
Eu is non-increasing in R+0 and so (3.8) continue to hold for some l ≥ 0.

Theorem 4.1. Let the assumptions of Theorem 3.1 hold, with the only exception that (3.3) is replaced by

lim inf
t→∞

[(∫ t

0
%k2dτ

)1/2

+A (k(t))

]/∫ t

0
kdτ <∞, (4.1)

where t 7→ A (k(t)) is given in (3.4). Then along any strong solution u of (1.8) property (3.5) holds.

Before proving this result we observe that we must amplify the discussion already given in Section 3 and take
into account the more delicate term τ 7→ %(τ)M(‖Du‖2)〈Dut , Dφ〉 in (A) and (B), which makes the analysis more
involved when we use (B) in the degenerate case a = 0. Lemma 3.2 holds also in this new context and so (3.8) is true
for some l ≥ 0. Moreover we still require two further lemmas under assumptions (H) and (AS)-(a).

Lemma 4.2. The conclusions (3.6) and (3.7) of Lemma 3.2 continue to hold. Moreover, the Kirchhoff damped function

K% := %M(‖Du‖2)‖Dut‖
2
∈ L1(R+0 ).

Furthermore %‖Dut‖
2
∈ L1(R+0 ) whenever either (1.8) is non-degenerate, that is a > 0, or

inf
R+0
[a + bγ ‖Du(t, ·)‖2γ−2

] > 0.
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Proof. By (B) and (1.3)

0 ≤
∫ t

0
{Du(τ )+ %(τ)M(‖Du‖2)‖Dut‖

2
}dτ ≤ Eu(0)− Eu(t) ≤ Eu(0),

since Eu ≥ 0 in R+0 by Lemma 3.2, and so K% ∈ L1(R+0 ). The last part of the lemma follows at once. �

Lemma 4.3. For all t ≥ T ≥ 0 we have∫ t

T
%(τ)k(τ )M(‖Du‖2)|〈Dut , Du〉|dτ ≤ ε3(T )

(∫ t

T
%(τ)k2(τ )dτ

)1/2

, (4.2)

where ε3(T ) = K
(∫
∞

T K%(t)dt
)1/2
→ 0 as T →∞ and

K := sup
R+0

(
‖Du(t, ·)‖ ·

√
M(‖Du‖2)

)
.

Proof. By (3.7) clearly K <∞, since γ > 1. Hence by integration from T to t and use of Hölder’s inequality twice,
we obtain∫ t

T
%(τ)k(τ )M(‖Du‖2)|〈Du, Dut 〉|dτ ≤ K

∫ t

T
%(τ)k(τ )

√
M(‖Du‖2)‖Dut (τ, ·)‖dτ

≤ ε3(T )

(∫ t

T
%(τ)k2(τ )dτ

)1/2

,

where ε3(T )→ 0 as T →∞ by Lemma 4.2. �

Proof of Theorem 4.1. Suppose for contradiction that Eu(t) approaches a limit l > 0 as t →∞. As in the proof of
Theorem 3.1 we first treat the case (3.1) when k is also of class C1(R+0 ). Consider the Lyapunov function

V (t) = 〈ut , φ〉, φ = k(t)u ∈ K .

Hence by the distribution identity (A) above, for any t ≥ T ≥ 0, we have

V (τ )]tT =
∫ t

T
{k′〈u, ut 〉 + 2k‖ut‖

2
− k[‖ut‖

2
+ M(‖Du‖2)‖Du‖2 + 〈 f (·, u), u〉]}dτ

−

∫ t

T
%k M(‖Du‖2)〈Du, Dut 〉dτ −

∫ t

T
k〈Q(τ, ·, u, ut ), u〉dτ.

(4.3)

We first estimate the right-hand side of (4.3). Clearly (3.16) holds. Moreover, Lemma 3.3 and Lemmas 3.2–3.3 of [15]
continue to hold, so we have again the estimates (3.17)–(3.19). Now, applying (3.16), (3.17)–(3.19) and (4.2), from
(4.3) we obtain

V (τ )]tT ≤ U
∫ t

T
|k′|dτ + 2θ

∫ t

T
kdτ + 2ε2(T )C(θ)

(∫ t

0
σ 1−℘k℘dτ

)1/℘

−α

∫ t

T
kdτ + ε3(T )

(∫ t

0
%k2dτ

)1/2

+ ε1(T )B(k(t)),

(4.4)

where ε1(T ) is defined in (3.20), ε2(T ) in (3.21), ε3(T ) in (4.2) and k 7→ B(k) in (3.4). By (4.1) there is a sequence
ti ↗∞ and a number ` > 0 such that(∫ ti

0
%k2dτ

)1/2

+A (k(ti )) ≤ `
∫ ti

0
kdτ. (4.5)

Choose θ = θ(l) = α/4 and fix T > 0 so large that (3.23) holds, where now ε(T ) = max{ε1(T ), ε2(T ), ε3(T )}.
Hence for all ti ≥ T ≥ 0 again (3.24) holds, and so, arguing as before, we obtain (3.25) by (3.1). The proof of the
general case, k ∈ C BV (R+0 ) but not k ∈ C1(R+0 ), proceeds as in Theorem 3.1.
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In the case (3.2), arguing as in Theorem 3.1 and using (4.5) in the place of (3.22), we get again (3.28), which gives
the required contradiction by (3.2). �

Combining Theorem 7.2 of [14], with the results of [15], we introduce another weaker version of Theorem 4.1
when k and % are related.

Theorem 4.4. Assume problem (1.8) is non-degenerate, that is a > 0. Let (H), (AS)-(a) hold and suppose there exists
a function k verifying

k(t) ≤ Const. %(t) for all t sufficiently large, (4.6)

and either (3.1) or (3.2). Suppose finally

lim inf
t→∞

[(∫ t

0
%k2dτ

)1/2

+B(k(t))

]/∫ t

0
kdτ <∞, (4.7)

where k 7→ B(k) is defined in (3.4). Then along any strong solution of (1.8) property (3.5) holds.

Proof. We first consider the case in which k satisfies (3.1). Observe that Lemma 3.2 continue to hold, so that again
(3.8) holds for some l ≥ 0. Hence we follow the proof of Theorem 4.1 until the derivation of (4.3). Since Lemmas 3.2,
3.3, 4.2 and 4.3 continue to hold also in this context, as well as Lemma 3.2 of [15], the estimates (3.16)–(3.18) and
(4.2) are still valid. While (3.19) no longer holds and Lemma 3.3 of [15] must be replaced by the following argument
(cf. [14, Lemma 7.3]). Since ut ∈ C(R+0 → X), by Poincaré’s inequality µ0‖ut‖

2
≤ ‖Dut‖

2. Hence by (4.6) and T
sufficiently large, for all t ≥ T we have∫ t

T
k‖ut‖

2dτ ≤ Const.
∫ t

T
%‖Dut‖

2dτ ≤ ε4(T ), (4.8)

where ε4(T ) = Const.
∫
∞

T %‖Dut‖
2dτ → 0 as T → ∞, by Lemma 4.2 since a > 0, in replacement of (3.19).

Therefore, instead of (4.4) we obtain

V (τ )]tT ≤ U
∫ t

T
|k′|dτ + 2ε4(T )− α

∫ t

T
kdτ + ε3(T )

(∫ t

0
%k2dτ

)1/2

+ ε1(T )B(k(t)), (4.9)

where ε1(T ) is defined in (3.20) and ε3(T ) in (4.2). Therefore, we obtain again (3.24), where now ti ↗∞ and ` > 0
are such that(∫ ti

0
%k2dτ

)1/2

+B(k(ti )) ≤ `
∫ ti

0
kdτ (4.10)

by (4.7), ε(T ) = max{ε1(T ), ε3(T ), ε4(T )} ≤ 3α/4` for T large, and finally S(T ) = V (T ) + ε(T ){2 + `
∫ T

0 kdτ }.
Hence (3.25) gives the required contradiction. When k 6∈ C1(R+0 ) the proof derives exactly as in Theorem 3.1.

In case (3.2), arguing as in Theorem 3.1 and using (4.8) in the place of (3.19) and (4.10) in the place of (3.22), we
get again (3.28), so that the contradiction follows by (3.2). �

Theorem 4.5. Let (1.8) be non-degenerate and let the assumptions of either Theorem 4.1 or of Theorem 4.4 hold,
with the only exception that k 6∈ L1(R+0 ) is now of class W 1,1

loc (R
+

0 ) ∩ L∞(R+0 ) and satisfies also

|k′| ≤ Const.
√
%k a.e. in R+0 . (4.11)

Then (3.5) holds.

Proof. It is clear that the proof of the regular case of (3.1) can be applied also in this setting. It is enough to observe
as in [14] that the term k′〈u, ut 〉 is now estimated in the following way

|k′〈u, ut 〉| ≤ Const.
√
%k‖u‖ · ‖ut‖ ≤ Const.

√
%k‖Dut‖,
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by (4.11) and Hölder’s and Poincaré’s inequalities. Hence by Hölder’s inequality∫ t

T
|k′〈u, ut 〉|dτ ≤ Const.

(∫ t

T
kdτ

)1/2 (∫ t

T
%‖Dut‖

2dτ
)1/2

≤ ε5(T )

(
1+

∫ t

T
kdτ

)
,

where ε5(T ) = Const.
(∫
∞

T %‖Dut‖
2dτ

)1/2
→ 0 as T → ∞ by Lemma 4.2 since a > 0. Hence (4.4) and (4.9)

become, respectively,

V (τ )]tT ≤ ε5(T )

(
1+

∫ t

T
kdτ

)
+ 2θ

∫ t

T
kdτ + 2ε2(T )C(θ)

(∫ t

0
σ 1−℘k℘dτ

)1/℘

−α

∫ t

T
kdτ + ε3(T )

(∫ t

0
%k2dτ

)1/2

+ ε1(T )B(k(t)),

V (τ )]tT ≤ ε5(T )

(
1+

∫ t

T
kdτ

)
+ 2ε4(T )− α

∫ t

T
kdτ + ε3(T )

(∫ t

0
%k2dτ

)1/2

+ ε1(T )B(k(t)),

where again the dominating term is −α
∫ t

T kdτ by (3.1). Call `1 and `2 the numbers verifying (4.5) and (4.10),
respectively, in place of `, and take θ = θ(l) = 3α/16. Furthermore, in the first case, we fix T > 0 so
large that ε(T ) ≤ 3α/8 [1+ `1 + 2C(θ)`1] and ε(T ) ≤ 3α/4(1 + `2) in the second case, where now of course
ε(T ) = max{ε1(T ), ε2(T ), ε3(T ), ε4(T ), ε5(T )} = o(1) as T → ∞. Proceeding as in either Theorem 4.1 or
Theorem 4.4, respectively, in both cases we obtain

V (ti ) ≤ S(T )−
α

4

∫ ti

T
kdτ, (4.12)

where S(T ) = V (T )+ ε(T ){1+[1+ 2C(θ)]`1
∫ T

0 kdτ } in the first case, while S(T ) = V (T )+ ε(T ){3+ `2
∫ T

0 kdτ }
in the second case. Since k 6∈ L1(R+0 ), by (4.12) we get (3.25) which gives a contradiction using (3.16) and the fact
that k is bounded. �

Theorem 4.6 (The Case n = 1). Assume (H)′ and (AS)′. Suppose there exists a function k as in one of the
Theorems 4.1, 4.4 or 4.5. Then along any strong solution u of (1.8) property (3.5) holds.

Proof. With the modifications and simplifications already shown in the proof of Theorem 3.6 the result of
Theorems 4.1, 4.4 and 4.5 follow by Lemma 3.5, since also Lemmas 4.2 and 4.3 continue to hold without changes. �

5. Kirchhoff-polyharmonic systems

Consider in R+0 × Ω the strongly damped systems (1.9) for L ≥ 1 and (1.10) for L ≥ 2, with Dirichlet boundary
conditions (1.11) on R+0 × ∂Ω , where % ∈ L1

loc(R
+

0 → R+0 ), M is given in (1.2) and the operator DL is defined in
(1.12). As explained in Section 1, for the system (1.9) we assume condition (H)-(a), where now µ0 denotes the first
eigenvalue of (−∆)L in Ω , with zero Dirichlet boundary conditions, while for the system (1.10) we assume (H)-(a)
with (1.5) replaced by (1.13). In both cases we assume (H)-(b), with r = 2n/(n−2L) and n > 2L in order to simplify
the discussion. For clarity, in this section we denote this assumption by (H)L . Put

X = [W L ,2
0 (Ω)]N , K ′ = C1(R+0 → X),

while K is taken as always, see (2.1). The total energy associated to the systems (1.9) and (1.10) are defined,
respectively, by

E1φ = E1φ(t) =
1
2

(
‖φt‖

2
+ a‖DLφ‖

2
+ b‖DLφ‖

2γ
)
+Fφ,

E2φ = E2φ(t) =
1
2

(
‖φt‖

2
+ ‖DLφ‖

2
+ a‖DL−1φ‖

2
+ b‖DL−1φ‖

2γ
)
+Fφ.

Also in the definition of solution we give two different expressions of the Distribution Identity. More precisely,
we define a strong solution of (1.9) and (1.10), with the boundary conditions (1.11), a function u ∈ K satisfying,
respectively,
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(A1) Distribution identity

〈ut , φ〉]
t
0 =

∫ t

0
{〈ut , φt 〉 − M(‖DLu‖2)〈DLu,DLφ〉 − %(τ)〈DLut ,DLφ〉

− 〈Q(τ, ·, u, ut ), φ〉 − 〈 f (·, u), φ〉}dτ,

(A2) Distribution identity

〈ut , φ〉]
t
0 =

∫ t

0
{〈ut , φt 〉 − 〈DLu,DLφ〉 − M(‖DL−1u‖2)〈DL−1u,DL−1φ〉

− %(τ)〈DLut ,DLφ〉 − 〈Q(τ, ·, u, ut ), φ〉 − 〈 f (·, u), φ〉}dτ,

for all t ∈ R+0 and φ ∈ K .
(B) Conservation law

(i) Du := 〈Q(t, ·, u, ut ), ut 〉 ∈ L1
loc(R

+

0 ),

(ii) t 7→ Ei u(t)+
∫ t

0
{Du(τ )+ %(τ)‖DLut‖

2
}dτ is non-increasing in R+0 , i = 1, 2.

These definitions are meaningful under the hypotheses (H)L and (AS)-(a). Once again conditions (B)-(ii) and (1.3)
imply that both E1u and E2u are non-increasing in R+0 .

As explained in the introduction, there are several relevant physical phenomena modeled by systems (1.9) and
(1.10). The most studied problems arise when L = 2. Of course, (1.9), with the boundary conditions (1.11), reduces
to the prototype problem (1.1) when L = 1 and % ≡ 0.

In the next preliminary lemmas we assume (H)L and (AS)-(a).

Lemma 5.1. Let u be a strong solution either of (1.9) or (1.10). Then the total energies E1u, E2u satisfy in R+0

E1u ≥
1
2
‖ut‖

2
+

a

2

(
1−

µ

µ0

)
‖DLu‖2 +

b

2
‖DLu‖2γ ≥ 0,

E2u ≥
1
2

[
‖ut‖

2
+

(
1−

µ

µ0

)
‖DLu‖2

]
≥ 0.

(5.1)

Moreover,

‖ut‖, ‖DLu‖, ‖DL−1u‖, ‖u‖r ∈ L∞(R+0 ), (5.2)

while

%‖DLut‖
2,Du = 〈Q(t, ·, u, ut ), ut 〉 ∈ L1(R+0 ). (5.3)

Proof. The proof is almost exactly the same as for Lemma 3.2, provided that r is the appropriate Sobolev exponent.
Indeed, (5.1) follows directly from (1.5), (1.13) and the corresponding Poincaré inequality

µ0‖u‖
2
≤ ‖DLu‖2,

where µ0 is defined at the beginning of this section. By (5.1) it follows that ‖ut‖ and ‖DLu‖ are in L∞(R+0 ), and so
also ‖DL−1u‖ by Theorem 4.4.1 of [20], while the fact that ‖u‖r ∈ L∞(R+0 ) follows from the Sobolev inequality.
Both the conditions in (5.3) are deduced in the same manner, almost as in Section 4. More precisely using (B)-(ii)

0 ≤
∫ t

0

{
Du(τ )+ %(τ)‖DLut‖

2
}

dτ ≤ Eu(0),

since Eu ≥ 0 in R+0 , so (5.3) follows at once by (1.3). �

By (B)-(ii) and Lemma 5.1 there exist li ≥ 0, i = 1, 2, such that

lim
t→∞

Ei u(t) = li . (5.4)

In the new models (1.9) and (1.10) the term τ 7→ %(τ)〈DLut ,DLφ〉 in (A1) and (A2) needs to be evaluated with some
care, since it corresponds to the dynamical strongly viscous effects of the body (bar when L = 1, and beam L = 2).
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Lemma 5.2. For all t ≥ T ≥ 0 we have∫ t

T
%(τ)k(τ )〈DLu,DLut 〉dτ ≤ ε6(T )

(∫ t

T
%(τ)k2(τ )dτ

)1/2

,

where ε6(T ) =
(

supR+0
‖DLu(t, ·)‖

)
·
(∫
∞

T %(τ)‖DLut‖
2dτ

)1/2
→ 0 as T →∞.

Proof. We proceed as in Lemma 4.3. First of all we observe that by Hölder’s inequality and (5.2) in R+0

|〈DLu(t, ·),DLut (t, ·)〉| ≤

sup
R+0
‖DLu(t, ·)‖

 ‖DLut‖.

Then by integration from T and t and another use of Hölder’s inequality we obtain∫ t

T
%(τ)k(τ )〈DLu,DLut 〉dτ ≤ ε6(T )

(∫ t

T
%(τ)k2(τ )dτ

)1/2

,

where ε6(T )→ 0 as T →∞ by (5.3). �

Lemma 5.3. Suppose li > 0, i = 1, 2, in (5.4). Then there exist αi = αi (li ) > 0 such that in R+0
‖ut‖

2
+ a‖DLu‖2 + b‖DLu‖2γ + 〈 f (·, u), u〉 ≥ α1,

‖ut‖
2
+ ‖DLu‖2 + a‖DL−1u‖2 + b‖DL−1u‖2γ + 〈 f (·, u), u〉 ≥ α2.

Proof. For system (1.9) the proof is analogous as the one in Lemma 3.3, taking here into account the appropriate
Sobolev exponent r , for the space X = [W L ,2

0 (Ω)]N .
For system (1.10) in J1 we obtain, arguing as in Lemma 3.3 and using (1.13),

L u ≥

(
1−

µ

µ0

)
l2.

Following the proof of Lemma 3.3 now DLu replaces Du in (3.13) and C depends on the corresponding constants λ1
and λp now arising from

‖u‖ρ ≤ λρ‖DLu‖. (5.5)

When t ∈ J2 we again distinguish two cases depending on whether 1 < p ≤ r or p > r . For 1 < p ≤ r by (1.13) it
results

L u ≥

(
1−

µ

µ0

)
C2

2(l2).

Therefore

α2 = α2(l2) =

(
1−

µ

µ0

)
min{l2,C2

2(l2)}.

Analogously, in the case p > r , using (5.5) we obtain (3.14) with DLu in the place of Du. Thus we find

α2 = α2(l2) = min
{(

1−
µ

µ0

)
l2,

(
1−

µ

µ0

)
c2

5(l2), c2
4(l2), l2/4c0

}
,

with c0 = C1/κ1, arising from (3.11) and (H)L -(b). �

Theorem 5.4. Let (H)L and (AS) hold. If k is a function as in Theorem 4.1, then along any strong solution u of either
(1.9) or (1.10) we have

lim
t→∞

Ei u(t) = 0 and lim
t→∞

(‖ut‖ + ‖DLu‖) = 0. (5.6)
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Proof. As in the proof of Theorem 4.1 we first consider k in (3.1) also of class C1(R+0 ) and suppose for contradiction
that li > 0 in (5.4).

Define Vi (t) = k(t)〈u, ut 〉 = 〈ut , φ〉, φ = k(t)u, i = 1, 2, where we have denoted the fixed solution ui by u for
simplicity. Hence φ ∈ K . From the distribution identities (A1) and (A2) we obtain for all t ≥ T ≥ 0

V1(τ )]
t
T =

∫ t

T

{
k′〈u, ut 〉 + 2k‖ut‖

2
− k[‖ut‖

2
+ M(‖DLu‖2)‖DLu‖2 + 〈 f (·, u), u〉]

}
dτ

−

∫ t

T
%k〈DLu,DLut 〉dτ −

∫ t

T
k〈Q(τ, ·, u, ut ), u〉dτ ;

V2(τ )]
t
T =

∫ t

T

{
k′〈u, ut 〉 + 2k‖ut‖

2
− k[‖ut‖

2
+ ‖DLu‖2 + M(‖DL−1u‖2)‖DL−1u‖2 + 〈 f (·, u), u〉]

}
dτ

−

∫ t

T
%k〈DLu,DLut 〉dτ −

∫ t

T
k〈Q(τ, ·, u, ut ), u〉dτ.

Lemmas 3.2 and 3.3 of [15] continue to hold in this context, so that it is possible to make use of (3.18) and (3.19),
while (3.16) now holds by (5.2) of Lemma 5.1. Moreover, Lemmas 5.2 and 5.3 and the above formulas for Vi yield

Vi (τ )]
t
T ≤ U

∫ t

T
|k′|dτ + 2θ

∫ t

T
kdτ + 2ε2(T )C(θ)

(∫ t

0
σ 1−℘k℘dτ

)1/℘

−αi

∫ t

T
kdτ + ε6(T )

(∫ t

0
%k2dτ

)1/2

+ ε1(T )B(k(t)),

instead of (4.4), where ε1(T ) is given in (3.20), αi as in Lemma 5.3, ε2(T ) in (3.21), while ε6(T ) is given in
Lemma 5.2.

From now on the proof is the same as in Theorem 4.1, where α and ε3(T ) are replaced by αi and ε6(T ) respectively,
and of course ε(T ) = max{ε1(T ), ε2(T ), ε6(T )}. �

Theorem 5.5. Let (H)L and (AS)-(a) hold. The assertion of Theorem 5.4 continue to hold when k is as either in
Theorem 4.4 or in the second part of Theorem 4.5.

In the relevant physical case L = 2, an interesting subcase of the system (1.10) when % ≡ 0 is given again in
R+0 × Ω by the system

ut t + (−∆)Lu − M(‖Du‖2)∆u + Q(t, x, u, ut )+ f (x, u) = 0, L ≥ 1 (5.7)

with Dirichlet boundary conditions (1.11) on R+0 × ∂Ω , where DL denotes as usual the operator given in (1.12). Here

X = [W L ,2
0 (Ω)]N as above, but

K ′ = C(R+0 → X) ∩ C1(R+0 → L2(Ω)),

as in Section 3, and K as in (2.1). The total energy is now given by

Eφ = Eφ(t) =
1
2

(
‖φt‖

2
+ ‖DLφ‖

2
+ a‖Dφ‖2 + b‖Dφ‖2γ

)
+Fφ.

By a strong solution of (5.7) we mean a function u ∈ K satisfying
(A) Distribution identity: for all t ∈ R+0 and φ ∈ K

〈ut , φ〉]
t
0 =

∫ t

0
{〈ut , φt 〉 − 〈DLu,DLφ〉 − M(‖Du‖2)〈Du, Dφ〉 − 〈Q(τ, ·, u, ut ), φ〉 − 〈 f (·, u), φ〉}dτ,

and the conservation law (B) stated exactly as that of Section 3. This definition is meaningful under hypotheses (H)L
and (AS)-(a), as justified above. Under the structure assumptions of Theorems 5.4 and 5.5 asymptotic stability carries
over equally, that is Eu(t) = o(1) as t →∞ along any strong solution u of (5.7).



G. Autuori et al. / Nonlinear Analysis: Real World Applications 10 (2009) 889–909 907

6. Applications

Following Sections 5 and 7 of [14], we present here some useful consequences of the main theorems, which can
be deduced choosing the auxiliary function k in an appropriate way. Hereby we assume (H)L and (AS), with L ≥ 1.

Corollary 6.1. Suppose

lim inf
t→∞

1
t

{(∫ t

0
%dτ

)1/2

+

(∫ t

0
δ1dτ

)1/m

+

(∫ t

0
δ2dτ

)1/q

+

(∫ t

0
σ 1−℘dτ

)1/℘
}
<∞, (6.1)

Then the assertions of Theorem 3.1, where % ≡ 0, and Theorems 4.1, 5.4 hold.
If %(t) ≥ %0 > 0 in R+0 , then the term σ 1−℘ in (6.1) can be dropped and the assertions of Theorems 4.4, 4.5 and

5.5 hold.

Proof. In the related theorems it is enough to take the auxiliary function k equal to 1. When %(t) ≥ %0 > 0, then (4.6)
and (4.11) are clearly automatic. �

When the passive viscous damping Q is autonomous, then σ and δ1, δ2 can be taken in (AS) equal to the same
positive constant, and condition (6.1) is automatic since 2 ≤ m < q . The standard case treated in the literature for
problems (1.9) and (1.10) is when Q does not depend also on x and u, and the coefficient % of the viscous internal
material damping is assumed constant. Hence Corollary 6.1 trivially applies in this simplest case. For instance, in the
main Theorem 1.2 of [9], a precise estimate for the total energy along the solutions of (1.10) is produced, when, in
our notation, N = 1, L = 2, a > 0, that is, in the non-degenerate case, f ≡ 0, % ≡ 0, Q = Q(v) verifies (AS)-(b)
and (T ) with ω(τ) = τm−1, 0 ≤ τ ≤ 1, and m ≥ 2, while (AS)-(a) holds only for v ≥ 1, with m = q ∈ [2, r ].
Hence, Corollary 6.1 extends also to the degenerate case the fact that the asymptotic stability property for (1.10), when
(AS)-(a) holds.

The recent paper [17] deals with the vectorial case N = 2 of (1.10), when L = 2, but n = 1, Q ≡ 0, % ≡ 0,
f = f (u) is a special smooth nonlinearity, verifying (H)L with p ≥ 2, and again in the non-degenerate case a > 0.
Hence Corollary 6.1 trivially applies since (6.1) is automatic.

The vectorial case N = 2 of (1.9), when L = 1, Q ≡ 0, % ≡ 1, f = f (u) is a special smooth nonlinearity,
verifying (H)L with 2 ≤ p ≤ 2(n − 1)/(n − 2) < r , and again in the non-degenerate case a > 0 is treated in [5].
Corollary 6.1 extends also for this model the asymptotic results of [5] to nontrivial dampings Q verifying (AS) and
(6.1).

For other similar examples and a more extensive bibliography we refer the reader to [17].

Corollary 6.2. Suppose

lim inf
t→∞

1
log t

{(∫ t

1

%

τ 2 dτ
)1/2

+

(∫ t

1

δ1

τm dτ
)1/m

+

(∫ t

1

δ2

τ q dτ
)1/q

+

(∫ t

1

σ 1−℘

τ℘
dτ
)1/℘}

<∞. (6.2)

Then the assertions of Theorem 3.1, where % ≡ 0, and Theorems 4.1, 5.4 hold.
If %(t) ≥ %0/t > 0 in R+0 , then the term σ 1−℘/τ℘ in (6.2) can be dropped and the assertions of Theorems 4.4,

4.5 and 5.5 hold.

Proof. In the related theorems it is enough to take the auxiliary function k(t) = min{1, 1/t}. When %(t) ≥ %0/t > 0,
then (4.6) and (4.11) are clearly automatic. �

The prototype systems, with f and Q as in (1.7)
Here we turn back to the systems (1.1) and (1.8)–(1.10), when f and Q are as in (1.7). We first show that Q satisfies

(AS). Indeed, letting hi (t, x) the least eigenvalue of the symmetric part of the continuous coefficient matrix Ai (t, x),
with hi (t, x) ≥ 0 by assumption, and Hi (t, x) be its Euclidean norm, for (t, x) ∈ R+0 × Ω and v ∈ RN we then have

hi (t, x)|v|2 ≤ (Ai (t, x)v, v), |Ai (t, x)| ≤ Hi (t, x), i = 1, 2.
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Since Q(t, x, v) = A1(t, x)|v|m−2v + A2(t, x)|v|q−2v and 2 ≤ m < q ≤ s in (1.7), it follows that (AS) is satisfied
with

σ(t) = inf
x∈Ω
{h1(t, x)+ h2(t, x)}, ω(τ) = min{τ q , τ 2

},

provided that σ 1−℘
∈ L1

loc(R
+

0 ), for some ℘ > 1, and

Hi ≤ γi hi in R+0 × Ω for some γi ≥ 1, (6.3)

and d1(t, x) = γm−1
1 H1(t, x), d2(t, x) = γ

q−1
2 H2(t, x), with H1(t ·) ∈ Ls/(s−m)(Ω) and H2(t ·) ∈ Ls/(s−q)(Ω) if

q < s, or H2(t ·) ∈ L∞(Ω) if q = s. Indeed,

|Q(t, x, v)| ≤ H1(t, x)|v|m−1
+ H2(t, x)|v|q−1

= H1(t, x)1/m(H1(t, x)|v|m)1/m′
+ H2(t, x)1/q(H2(t, x)|v|q)1/q

′

≤ γ
1/m′

1 H1(t, x)1/m(Q(t, x, v), v)1/m′
+ γ

1/q ′

2 H2(t, x)1/q(Q(t, x, v), v)1/q
′

.

Condition (6.3) is the weak uniform definiteness of Ai . Of course, (6.3) is automatic when either (1.7) is scalar, that
is, N = 1, or Q = Q(v) is autonomous and independent of x , so that hi = constant > 0. Condition (H) is valid for
f in (1.7), as shown in Section 2. Hence Corollaries 6.1 and 6.2 apply, provided that (6.1) or (6.2) hold, respectively.

Motivated by the example (1.7), we introduce the more specific behavior for the function ω in (AS)-(b)

ω(τ) = min{τ ν, τ 2
}, ν ≥ q, (6.4)

where we recall that q ≤ s = max{p, r}, when n ≥ 3. Arguing as in [14] we establish

Theorem 6.3. Let the assumptions of either Theorem 3.1, or of Theorem 4.1, or of Theorem 5.4 hold, with the only
exception that k 6∈ L1(R+0 ) is now of class W 1,1

loc (R
+

0 ) ∩ L∞(R+0 ) and satisfies also

|k′| ≤ Const. σ λk1−λ a.e. in R+0 , (6.5)

where λ > 0 and

1
λ
≥

{
max{s′, ν}, if n ≥ 3,
ν, if n = 2.

(6.6)

Then either (3.5) or (5.6) is valid along any strong solution of (1.1), (1.8)–(1.10), respectively.

Proof. It is enough to treat only the case n ≥ 3. Since ν in (6.4) can be taken as large as we wish, we may assume,
without loss of generality, that λ = 1/ν. The proof can follow that of the respective theorems, except for the estimation
of the first term

∫ t
T k′〈u, ut 〉dτ . For any τ ∈ R+0 we introduce the sets

Ω1 = Ω1(τ ) = {x ∈ Ω : |ut (τ, x)| ≤ 1}, Ω2 = Ω2(τ ) = {x ∈ Ω : |ut (τ, x)| > 1}.

By (6.5), Hölder’s inequality, (AS)-(b) and (6.4) we have∫
Ω1

k′(u, ut )dx ≤ Const.
∫
Ω1

σ λk1−λ
|u| · |ut |dx

≤ Const. |Ω |1/ν
′
−1/sk1/ν′

‖u‖s

(∫
Ω1

σ |ut |
νdx

)1/ν

≤ Const. k1/ν′
|〈Q(τ, ·, u, ut ), ut 〉|

1/ν,

since ν′ ≤ s and ‖u‖s ∈ L∞(R+0 ) by (3.7), being s = max{p, r}. Now, since s′ < 2 and |ut (τ, x)| > 1 in Ω2, by
Hölder’s inequality, (AS)-(b) and (3.7),∫

Ω2

k′(u, ut )dx ≤ Const.
∫
Ω2

σ λk1−λ
|u| · |ut |

2/s′dx
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≤ Const. k1/ν′
‖u‖s · ‖ut‖

2/ν′−2/s
(∫

Ω2

σ |ut |
2dx

)1/ν

≤ Const. k1/ν′
|〈Q(τ, ·, u, ut ), ut 〉|

1/ν .

Consequently, integrating from T to t ≥ T , we find∫ t

T
k′〈u, ut 〉dτ ≤ Const.

(
1+

∫ t

T
kdτ

)(∫ t

T
|〈Q(τ, ·, u, ut ), ut 〉|dτ

)1/ν

by Hölder’s and Young’s inequalities. The proof proceeds exactly as in the respective proofs of Theorems 3.1, 4.1 and
5.4. Indeed, in the first two cases, by (3.7), we can take T even large so that,∫ t

T
k′〈u, ut 〉dτ ≤ 1+

α

4

∫ t

T
kdτ,

where α = α(l) is given in Lemma 3.3, while the same estimate is used in the third case α here denotes αi = αi (li ),
where αi are given in Lemma 5.3, i = 1, 2. Hence, instead of (3.24), we reach the main formula

V (ti ) ≤ S(T )−
α

4

∫ ti

T
kdτ,

where S(T ) = 1 + V (T ) + ε(T )`[2C(θ) + 1]
∫ T

0 kdτ , while ` is given in either (3.22) or (4.5), and ε(T ) =
max{ε1(T ), ε2(T ), ε3(T ), ε6(T )}. �
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