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Abstract

In this paper we consider the problem of non-continuation of solutions of dis-
sipative nonlinear Kirchhoff systems, involving the p(x)-Laplacian operator and
governed by nonlinear driving forces f = f (t, x, u), as well as nonlinear external
damping terms Q = Q(t, x, u, ut ), both of which could significantly dependent
on the time t . The theorems are obtained through the study of the natural energy
Eu associated to the solutions u of the systems. Thanks to a new approach of the
classical potential well and concavity methods, we show the nonexistence of global
solutions, when the initial energy is controlled above by a critical value; that is,
when the initial data belong to a specific region in the phase plane. Several con-
sequences, interesting in applications, are given in particular subcases. The results
are original also for the scalar standard wave equation when p ≡ 2 and even for
problems linearly damped.

1. Introduction

In this paper we investigate the question of global nonexistence of solutions
for dissipative anisotropic nonhomogeneous p(x)-Kirchhoff systems. As far as we
know, this is the first non-continuation paper concerning with them; for related
asymptotic stability problems we refer to [3]. The natural setting is the variable
exponent Sobolev space W 1,p(·)

0 (�), where p varies continuously in �. In details,
we consider in R

+
0 ×�{

utt − M (I u(t))�p(x)u + µ|u|p(x)−2u + Q(t, x, u, ut ) = f (t, x, u),

u(t, x) = 0 on R
+
0 × ∂�,

(1.1)

where u = (u1, . . . , uN ) = u(t, x) is the vectorial displacement, N � 1, R
+
0 =

[0,∞),� is a bounded domain of R
n and µ � 0. Here�p(x) denotes the vectorial
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p(x)-Laplacian operator defined as div(|Du|p(x)−2 Du), where div is the vectorial
divergence and Du the Jacobian matrix of u. While the associated p(x)-Dirichlet
energy integral is I u(t) = ∫

�
{|Du(t, x)|p(x)/p(x)} dx . The functions f , M and

Q represent a source force, a Kirchhoff dissipative term and an external damping
term, respectively.

Throughout the paper, we assume that (Q(t, x, u, v), v) � 0 for all (t, x, u, v)
in R

+
0 ×�× R

N × R
N ,

Q ∈ C(R+
0 ×�× R

N × R
N → R

N ) and f ∈ C(R+
0 ×�× R

N → R
N ),

f (t, x, u) = Fu(t, x, u), F(t, x, 0) = 0,

so that F(t, x, u) = ∫ 1
0 ( f (t, x, τu), u) dτ is a potential for f in u; and also (M )

the function M ∈ C(R+
0 → R

+
0 ) is locally Lipschitz in R

+ and such that

γM (τ ) � τM(τ ), τ ∈ R
+
0 , M (τ ) =

∫ τ

0
M(z) dz,

for some number γ � 1.
The question of non-continuation of solutions is treated by means of the nat-

ural energy Eu associated with any solution u of the system, refer to (3.1). The
main result is Theorem 3.1, where the initial energy Eu(0) is bounded from above
by the critical value Ẽ1; see Fig. 1. Refining an argument introduced by Pucci
and Serrin [22, Theorem 1–(ii)] for evolution systems with linear damping terms,
together with a new combination of the classical potential well and concavity meth-
ods, in the way used, for example, in [17,18,23] for the wave case, and in [25] for
the standard wave Kirchhoff equation, we completely extend the region of global
nonexistence for the anisotropic Kirchhoff systems from � to �̃. Indeed, global
nonexistence results are proved assuming only that Eu(0) < Ẽ1, independently of
the initial value ‖u(0, ·)‖q(·); as an illustrative example we refer to Corollary 4.1.

Fig. 1. The phase plane (υ, E). Here E = Eu(0), where Eu represents the natural energy
associated with the solution u of the system, while υ stands for ‖u(0, ·)‖q(·). The global
nonexistence results, given in [17,18,22–25] in special subcases of this paper, concern only
the region � which is smaller than �̃, when global nonexistence occurs
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Here ‖ · ‖q(·) denotes the norm in the anisotropic Lebesgue space Lq(·)(�), where
q(·) is a variable exponent related to the growth of f in the u variable, see condition
(F3) in Section 3, or the application given in the example (4.1)–(4.2). The results
of this paper are new even in the standard wave case when p ≡ 2 as well as when
Q is linear in the v = ut variable.

Several consequences are deduced in special subcases of f , M and Q, inter-
esting in applications; see Section 4. We also show that if u is a global solution of
(1.1) and Eu(0) � E1, then Ẽ1 � E1. This result allows us to prove in a new way
and wider setting that if u is a local solution of (1.1), with ‖u(0, ·)‖q(·) > υ1 and
Eu(0) = E1, then u cannot be global, see Theorem 4.3. The possibility to cover this
case was first discovered by Vitillaro [23], but with a different proof technique
and only for strong solutions, even if not explicitly stated, refer to [23, the proof of
case (a) of Theorem 3]. When f significantly depends on t , Theorem 4.3 handles
also the case Q ≡ 0, not covered in [23], refer to Remark 4.1. Indeed, we are able
to establish refined results, even dealing with a wider class of solutions verifying a
weak conservation law, thanks to a new argument based on the lower bounds of the
potential energy along a solution u. The main reason to consider weak solutions
was first given in [20, Remark 4 at page 199]; see also [21, Remark 2 at page 49]
and the discussion on [17, page 345].

In recent years, the study of p-Kirchhoff equations involving the quasilinear
homogeneous p-Laplace operator, based on the theory of standard Sobolev spaces
W 1,p

0 (�), has been widely studied, see, for example, [6,25], while for wave equa-
tions [7], and for the elliptic case [5,8]. In particular, in [25] global nonexistence
results are proved for scalar Kirchhoff equations, when Eu(0) < E1 and all the
exponents are constant, with p(x) ≡ 2. In addition, in [25] the conservation law
is assumed only in the stronger form (B)s, so that the energy function Eu is non-
increasing in R

+
0 (see Sections 3 and 4 for the definition of (B)s and Remark 5.1).

Finally, in [25] the damping function Q depends only on v, while f is a pure power
of u. Here we cover much more situations, in which the dependence on t could be
significant.

Last but not least, we recall that the nonhomogeneous p(x)-Kirchhoff operator
has been used in the last decades to model various phenomena, see [9–16,19,26,27]
and the references therein. Indeed, recently, there has been an increasing interest in
studying systems involving somehow nonhomogeneous p(x)–Laplace operators,
motivated by the image restoration problem, by the modeling of electro-rheologi-
cal fluids (sometimes referred to as smart fluids), as well as the thermo-convective
flows of non-Newtonian fluids: details and further references can be found in [2
and 19], while for the regularity of weak solutions we refer to [1].

2. Basic facts and notation

Let h ∈ C+(�), where

C+(�) = {h ∈ C(�) : min
x∈�

h(x) > 1},
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and define

h+ = sup
x∈�

h(x) and h− = inf
x∈� h(x).

Hereafter p ∈ C+(�) is fixed. The variable exponent Lebesgue space, denoted by
L p(·)(�) = [L p(·)(�)]N and consisting of all the measurable vector-valued func-
tions u : � → R

N such that
∫
�

|u(x)|p(x) dx is finite, is endowed with the so called
Luxemburg norm

‖u‖p(·) = inf

{
λ > 0 :

∫
�

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
,

and is a separable and reflexive Banach space, refer to [16, Corollaries 2.12 and 2.7].
For basic properties of the variable exponent Lebesgue spaces we refer to [16].
Since here 0 < |�| < ∞, if q ∈ C+(�) and p � q in �, then the embedding
Lq(·)(�) ↪→ L p(·)(�) is continuous, refer to [16, Theorem 2.8].

Let L p′(·)(�) be the conjugate space of L p(·)(�), obtained by conjugating the
exponent pointwise that is, 1/p(x) + 1/p′(x) = 1, [10, Theorem 1.14]. For any
u ∈ L p(·)(�) and v ∈ L p′(·)(�) the following Hölder type inequality∣∣∣∣

∫
�

(u(x), v(x))dx

∣∣∣∣ �
(

1

p−
+ 1

p′−

)
‖u‖p(·)‖v‖p′(·)

is valid, where (·, ·) is the inner product on R
N × R

N , [16, Theorem 2.1].
An important role in manipulating the generalized Lebesgue–Sobolev spaces

is played by the p(·)-modular of the L p(·)(�) space, which is the convex function
ρp(·) : L p(·)(�) → R defined by

ρp(·)(u) =
∫
�

|u(x)|p(x) dx .

If (u j ) j , u ∈ L p(·)(�), then the following relations hold: ‖u‖p(·) < 1 (= 1; >
1) ⇔ ρp(·)(u) < 1 (= 1; > 1),

‖u‖p(·) � 1 ⇒ ‖u‖p−
p(·) � ρp(·)(u) � ‖u‖p+

p(·),

‖u‖p(·) � 1 ⇒ ‖u‖p+
p(·) � ρp(·)(u) � ‖u‖p−

p(·),
(2.1)

and ‖u j − u‖p(·) → 0 ⇔ ρp(·)(u j − u) → 0 ⇔ (u j ) j converges to u in measure
in� and ρp(·)(u j ) → ρp(·)(u), since p+ < ∞. In particular, ρp(·) is continuous in
L p(·)(�). For a proof of these facts see [10, Theorem 1.4] and [16].

The variable exponent Sobolev space W 1,p(·)(�) = [W 1,p(·)(�)]N , consist-
ing of functions u ∈ L p(·)(�) whose distributional Jacobian matrix Du is in
[L p(·)(�)]nN , is endowed with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖Du‖p(·).

Thus W 1,p(·)(�) is a separable and reflexive Banach space, refer to [16, Theo-
rem 3.1]. Define H1,p(·)

0 (�) = [H1,p(·)
0 (�)]N as the closure of C∞

0 (�) = [C∞
0 (�)]N
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in W 1,p(·)(�), and W 1,p(·)
0 (�) = [W 1,p(·)

0 (�)]N as the Sobolev space of the func-
tions u ∈ W 1,p(·)(�), with zero boundary values, refer to [12]. As shown by
Zhikov [26,27], the smooth functions are in general not dense in W 1,p(·)(�), but
if p ∈ C+(�) is logarithmic Hölder continuous, that is, there exists L > 0 such
that for all x , y ∈ �, with 0 < |x − y| � 1/2

|p(x)− p(y)| � − L

log(|x − y|) , (2.2)

then H1,p(·)
0 (�) = W 1,p(·)

0 (�), namely the density property holds, see [12,15]
and in particular [14, Theorem 3.3]. Since � is a bounded domain, if p ∈ C+(�)
satisfies (2.2), then the p(·)-Poincaré inequality

‖u‖p(·) � C‖Du‖p(·)

is valid for all u ∈ W 1,p(·)
0 (�), where C depends on p, |�|, diam(�), n and N ,

[14, Theorem 4.1], and so

‖u‖ = ‖Du‖p(·),

is an equivalent norm in W 1,p(·)
0 (�). Moreover W 1,p(·)

0 (�) is a separable and reflex-

ive Banach space. If p+ < n and (2.2) holds, then the embedding W 1,p(·)
0 (�) ↪→

L p∗(·)(�) is continuous, see [13, Theorem 1.1], where p∗ is the critical variable
exponent related to p, defined by the relation

p∗(x) = np(x)

n − p(x)
for all x ∈ �.

Details, extensions and further references can be found in [10,12–16].
Hereafter, we assume that

p ∈ C+(�) satisfies (2.2) and 1 < p− � p+ < n.

For all h ∈ C(�), with 1 � h � p∗ in�, we denote by λh(·) the Sobolev constant,

depending on h, p, |�|, n and N , of the continuous embedding W 1,p(·)
0 (�) ↪→

Lh(·)(�), that is

‖u‖h(·) � λh(·)‖Du‖p(·) for all u ∈ W 1,p(·)
0 (�), (2.3)

see [13, Theorem 1.1] and also [16, Theorem 2.8]. Of course in (2.3) we can take
h ≡ 1.

For simplicity in notation

L p(·)(�) = [L p(·)(�)]N , W 1,p(·)
0 (�) = [W 1,p(·)

0 (�)]N ,

endowed with the norms ‖ · ‖p(·) and ‖u‖ = ‖Du‖p(·), respectively.
Throughout the paper, the usual Lebesgue space L2(�) = [L2(�)]N is equipped

with the canonical norm ‖ϕ‖2 = (∫
�

|ϕ(x)|2 dx
)1/2

, while the elementary bracket
pairing 〈ϕ,ψ〉 = ∫

�
(ϕ(x), ψ(x))dx is clearly well defined for all ϕ, ψ such that

(ϕ, ψ) ∈ L1(�). Finally

K = C(R+
0 → W 1,p(·)

0 (�)) ∩ C1(R+
0 → L2(�))

denotes the main solution and test function space, adopted in Sections 3 and 4.
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3. The main theorem

In this section we provide a non-continuation result for the solutions of the
problem (1.1) and assume that f , M and Q are as in the Section 1. Suppose also
that for all φ ∈ K

(F1)
F(t, ·, φ(t, ·)), ( f (t, ·, φ(t, ·)), φ(t, ·)) ∈ L1(�) f or all t ∈ R

+
0 ;

〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 ∈ L1
loc(R

+
0 ).

The potential energy of the field φ ∈ K is given by

Fφ(t) = F (t, φ) =
∫
�

F(t, x, φ(t, x))dx,

and it is well defined by (F1), while the natural total energy of the field φ ∈ K ,
associated with the problem (1.1), is

Eφ(t) = 1
2‖φt (t, ·)‖2

2 + A φ(t)− Fφ(t),

A φ(t) = M (I φ(t))+ µ

∫
�

|φ(t, x)|p(x)

p(x)
dx � 0,

(3.1)

where µ � 0 and I φ is the p(·)-Dirichlet energy integral, that is

I φ(t) = I (t, φ) =
∫
�

|Dφ(t, x)|p(x)

p(x)
dx .

Of course Eφ is well defined in K . For all φ ∈ K and (t, x) ∈ R
+
0 ×� we define

pointwise

Aφ(t, x) = −M(I φ(t))�p(x)φ(t, x)+ µ|φ(t, x)|p(x)−2φ(t, x), (3.2)

so that A is the Fréchet derivative of A with respect to φ. By (M ) we have

〈Aφ(t, ·), φ(t, ·)〉 = M(I φ(t))ρp(·)(Dφ(t, ·))+ µρp(·)(φ(t, ·))

� p+

{
I φ(t)M(I φ(t))+ µ

∫
�

|φ(t, x)|p(x)

p(x)
dx

}
(3.3)

� γ p+A φ(t).

Before introducing the definition of the solution to (1.1), we assume the following
monotonicity condition

(F2) Ft � 0 in R
+
0 × W 1,p(·)

0 (�),

where Ft is the partial derivative with respect to t of F = F (t, w), with (t, w) ∈
R

+
0 × W 1,p(·)

0 (�).
Following [3 and 20], we say that u is a (weak) solution of (1.1) if u ∈ K

satisfies the two properties:
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(A) Distribution Identity

〈ut , φ〉 ]t
0 =

∫ t

0
{ 〈ut , φt 〉 − M(I u(τ )) · 〈|Du|p(·)−2 Du, Dφ〉

−µ〈|u|p(·)−2u, φ〉 − 〈Q(τ, ·, u, ut )− f (τ, ·, u), φ〉} dτ

for all t ∈ R
+
0 and φ ∈ K ;

(B) Energy Conservation
(i) Du(t) = 〈Q(t, ·, u(t, ·), ut (t, ·)), ut (t, ·)〉 + Ft u(t) ∈ L1

loc(R
+
0 ),

(ii) Eu(t) � Eu(0)−
∫ t

0
Du(τ )dτ for all t ∈ R

+
0 .

In general it is important to consider (weak) solutions instead of strong solu-
tions, namely functions u ∈ K satisfying (A), (B)-(i), while (B)-(ii) is replaced by
the Strong Energy Conservation (B)s-(ii), that is Eu(t) = Eu(0) − ∫ t

0 Du(τ )dτ
for all t ∈ R

+
0 . The main reason was first given in [20, Remark 4 at page 199]; see

also [21, Remark 2 at page 49] and the discussion in [17, page 345]. Of course if u
is a strong solution, then Eu is non-increasing in R

+
0 and this makes the analysis

much simpler. We refer also to the Remark 4.1.

Remark 3.1. If u ∈ K is a solution of (1.1) in R
+
0 ×�, then by (3.1)2 there exists

alwaysw1 � 0 such that A u(t) � w1 for all t ∈ R
+
0 . Hence by (3.1)1, (B)-(ii) and

(F2) we get Fu(t) � w1 − Eu(0) � −Eu(0) for all t ∈ R
+
0 , in other words Fu

is bounded below in R
+
0 along any solution u ∈ K .

In order to state our main result we consider the following condition:
(F3) There exists a function q ∈ C+(�) satisfying the restriction

max{2, γ p+} < q−, (3.4)

with the property that for all F > 0 and φ ∈ K for which inf t∈R
+
0

Fφ(t) � F,
there exist c1 = c1(F, φ) > 0 and ε0 = ε0(F, φ) > 0, such that

(i)

Fφ(t) � c1ρq(·)(φ(t, ·)) f or all t ∈ R
+
0 ,

and for all ε ∈ (0, ε0) there exists c2 = c2(F, φ, ε) > 0, such that
(ii)

〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 − (q− − ε)Fφ(t) � c2ρq(·)(φ(t, ·)) f or all t ∈ R
+
0 .

In general the function q ∈ C+(�) verifies further restrictions than (3.4) in
order to get the validity of (F1) and (F2), see Section 4 for concrete examples.

Theorem 3.1. Assume (M ), (F1) and (F2). If u ∈ K is a solution of (1.1) in
R

+
0 × �, then w2 = inf t∈R

+
0

Fu(t) > −∞. If there exists � > −1 such that
Eu(0) < �w2, then w2 > 0.
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Finally, if also (F3) holds, then there are no solutions u ∈ K of (1.1) in R
+
0 ×�,

for which

Eu(0) <

(
q−
γ p+

− 1

)
w2 = Ẽ1, (3.5)

and for which there exist T � 0, q1 > 0, m > 1, κ � −m, with m + κ < q−, and
non-negative functions δ ∈ L∞

loc(J ), ψ, k ∈ W 1,1
loc (J ), J = [T,∞), with k′ � 0,

ψ > 0 in J and ψ ′(t) = o(ψ(t)) as t → ∞, such that

(Q) 〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉 � q1δ(t)
1/mDu(t)1/m′ ‖u(t, ·)‖1+κ/m

q(·)

for all t ∈ J , and

δ � (k/ψ)m−1 in J,
∫ ∞

ψ(t) [max{k(t), ψ(t)}]−(1+θ) dt = ∞, (3.6)

for some appropriate constant θ ∈ (0, θ0), where

θ0 = min

{
q− − 2

q− + 2
,

q− − m − κ

m(1 + q+)+ κ − q−

}
. (3.7)

Proof. Let u ∈ K be a solution of (1.1) in R
+
0 × �. Clearly A u and Fu are

bounded below in R
+
0 as shown in Remark 3.1. In particular w2 > −∞ and

inf t∈R
+
0

A u(t) � w1 for some w1 � 0. Assume that Eu(0) < �w2, with � >

−1. Then Fu(t) � w1−Eu(0) > w1−�w2, which givesw2 > w1/(1+�) � 0,
and so w2 > 0.

Suppose now that also (F3) holds and by contradiction that there exists a solu-
tion u ∈ K of (1.1) in R

+
0 ×�, satisfying (Q) and (3.5)–(3.7) as in the statement.

Then Ẽ1 > 0 since (3.4) is in charge, so that � = −1 + q−/γ p+ > −1. By the
first part of the theorem w2 > 0 and so Ẽ1 > 0 by (3.4). Fix E2 � 0 in the interval
(Eu(0), Ẽ1) and define the function

H (t) = E2 − Eu(0)+
∫ t

0
Du(τ )dτ

for each t ∈ R
+
0 . Of course H is well defined and non-decreasing by (B)-(i) and

(F2), being D � 0 and finite along u. Hence, by (B)-(ii),

E2 − Eu(t) � H (t) � H0 = E2 − Eu(0) > 0 for t ∈ R
+
0 , (3.8)

where H0 = H (0). Moreover, by (3.8), (3.1), the choice of E2 and the definition
of w2, it follows that

H (t) � E2 − Eu(t) < Ẽ1 + Fu(t) �
(

q−
γ p+

− 1

)
Fu(t)+ Fu(t)

= q−
γ p+

Fu(t)
(3.9)
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for all t ∈ R
+
0 . In correspondence to F = w2 > 0, φ = u ∈ K , there exists

ε0 = ε0(w2, u) > 0 such that (F3) holds true and, without loss of generality, we
take ε0 > 0 so small that

ε0w2 � (q− − γ p+)w2 − γ p+E2, (3.10)

which is possible since w2 > 0 and E2 < Ẽ1. Note that (3.10) forces
ε0 � q− − γ p+, being E2 � 0.

Fix ε ∈ (0, ε0) and take φ = u in the Distribution Identity (A). By (3.1)

d

dt
〈ut (t, ·), u(t, ·)〉 = c3‖ut (t, ·)‖2

2 + (q− − ε)A u(t)− 〈Au(t, ·), u(t, ·)〉
+ 〈 f (t, ·, u(t, ·)), u(t, ·)〉 − (q− − ε)Fu(t)

− (q− − ε)Eu(t)− 〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉,

where c3 = 1 + (q− − ε)/2 > 0 by the choice of ε. By (3.3), applying (F3)-(ii)
with c2 = c2(w2, u, ε) > 0, we obtain for all t ∈ R

+
0

d

dt
〈ut (t, ·), u(t, ·)〉 � c3‖ut (t, ·)‖2

2 + c2ρq(·)(u(t, ·))− (q− − ε)Eu(t)

−〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉+(q−−ε − γ p+)A u(t).

Hence by (3.1) and by the definition of w2, since ε < q− − γ p+ by (3.10) and
Eu � E2 − H by (3.8), we have

d

dt
〈ut (t, ·), u(t, ·)〉 � c̃3‖ut (t, ·)‖2

2 + c2ρq(·)(u(t, ·))+ (q− − ε − γ p+)w2

−〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉 − γ p+Eu(t)

� c̃3‖ut (t, ·)‖2
2 + c2ρq(·)(u(t, ·))+ (q− − ε − γ p+)w2

−〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉 + γ p+H (t)− γ p+E2,

where c̃3 = 1 + γ p+/2. Consequently,

d

dt
〈ut (t, ·), u(t, ·)〉 � c̃3‖ut (t, ·)‖2

2 + c2ρq(·)(u(t, ·))+ γ p+H (t)

− 〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉,
(3.11)

again by (3.10).
By (F3)-(i), if ‖u(t, ·)‖q(·) � 1 then Fu(t) � c1‖u(t, ·)‖q+

q(·) by (2.1)1. On the

other hand, if ‖u(t, ·)‖q(·) � 1 then w2 � c1‖u(t, ·)‖q−
q(·) by (F3)-(i), the defini-

tion of w2 and (2.1)2. Hence ‖u(t, ·)‖q(·) � (w2/c1)
1/q− > 0, so that Fu(t) �

c1ρq(·)(u(t, ·)) � c1 (c1/w2)
q+/q− ‖u(t, ·)‖q+

q(·) by (F3)-(i). In conclusion, along

the solution u, we have for all t ∈ R
+
0

Fu(t) � c̃1‖u(t, ·)‖q+
q(·), with c̃1 = max{c1, c1(c1/w2)

q+/q−}.
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Hence, by (Q) and (3.9)

〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉
� q1‖u(t, ·)‖q−/m

q(·)
(
δ(t)1/(m−1)Du(t)

)1/m′
‖u(t, ·)‖−q+r

q(·)

� c̃r
1q1‖u(t, ·)‖q−/m

q(·)
(
δ(t)1/(m−1)Du(t)

)1/m′
[Fu(t)]−r

� c4‖u(t, ·)‖q−/m
q(·)

(
δ(t)1/(m−1)Du(t)

)1/m′
[H (t)]−r

for all t ∈ J , where c4 = (c̃1q−/γ p+)r q1 and

r = q− − m − κ

mq+
∈ (0, 1), (3.12)

since m + κ < q− and κ � −m by (Q). Put

r0 = min

{
r ,

1

2
− 1

q−

}
. (3.13)

Note that θ0 in (3.7) can be expressed as θ0 = r0/(1 − r0), and take from now on
r = θ/(1 + θ), so that r ∈ (0, r0). Consequently, by Young’s inequality, we get

〈Q(t, ·, u(t, ·), ut (t, ·)), u(t, ·)〉
�

{
(c4�)

m‖u(t, ·)‖q−
q(·) + �−m′

δ(t)1/(m−1)Du(t)
}

[H (t)]−r

� (c4�)
mH −r

0 ‖u(t, ·)‖q−
q(·) + �−m′

H r−r
0 δ(t)1/(m−1)[H (t)]−rDu(t),

(3.14)

where in the last step we have used the facts that H � H0 by (3.8) and that
0 < r < r0 � r by (3.13). The parameter � > 0 will be fixed later. Since
Du = H ′, we see that (1 − r)H −rH ′ = [H 1−r ]′. Hence it is convenient to
introduce the function

Z = Z (t) = λk(t) [H (t)]1−r + ψ(t)〈ut , u〉,
where λ > 0 is a constant to be fixed later. Clearly Z ∈ W 1,1

loc (J ) by Corol-
lary VIII.9 of [4] and so, almost everywhere in J ,

Z ′ = λk(1 − r)H −rH ′ + λk′H 1−r + ψ
d

dt
〈ut , u〉 + ψ ′〈ut , u〉.

If t ∈ R
+
0 and ρq(·)(u(t, ·)) � 1, then ρq(·)(u(t, ·)) � ‖u(t, ·)‖q−

q(·), by (2.1)1. Oth-
erwise ρq(·)(u(t, ·)) � 1, so that by (F3)-(i) we have w2 � c1 and ρq(·)(u(t, ·)) �
w2‖u(t, ·)‖q−

q(·)/c1. Hence for all t ∈ R
+
0 we get ρq(·)(u(t, ·)) � min{1, w2/c1}

‖u(t, ·)‖q−
q(·). Therefore, by (3.11) and (3.14), almost everywhere in J

Z ′ � λk(1 − r)H −rH ′ + λk′H 1−r + ψ ′〈ut , u〉
+ψ

{
c̃3‖ut‖2

2 + c2ρq(·)(u)+ γ p+H − 〈Q(t, ·, u, ut ), u〉
}

�
(
λk(1 − r)− �−m′

H r−r
0 δ1/(m−1)ψ

)
H −rH ′ + γ p+ψH + λk′H 1−r

+ψ ′〈ut , u〉 + ψ
{

c̃3‖ut‖2
2 + c̃2‖u‖q−

q(·) − (c4�)
mH −r

0 ‖u‖q−
q(·)

}
,
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where c̃2 = min{c2, c2w2/c1}. Thus, almost everywhere in J , by (3.6)1 and the
fact that λk′H 1−r � 0, we find

Z ′ � k
(
λ(1 − r)− �−m′

H r−r
0

)
H −rH ′ + γ p+ψH

+ψ ′〈ut , u〉 + ψ
{

c̃3‖ut‖2
2 + c̃2‖u‖q−

q(·) − (c4�)
mH −r

0 ‖u‖q−
q(·)

}
.

Next, from Cauchy’s and Young’s inequalities, and the definition of K , we have

|〈ut (t, ·), u(t, ·)〉| � ‖ut (t, ·)‖2‖u(t, ·)‖2 � ‖ut (t, ·)‖2
2 + ‖u(t, ·)‖2

2. (3.15)

Consider now the relation zξ � (z + 1) � (1 + 1/η)(z + η), which holds for all
z � 0, ξ ∈ [0, 1], η > 0, and take z = ‖u(t, ·)‖q−

2 , ξ = 2/q− < 1, since q− > 2
by (3.4), and η = H0, we obtain

‖u(t, ·)‖2
2 � (1 + 1/H0)(‖u(t, ·)‖q−

2 + H0).

Of course the embedding Lq(·)(�) ↪→ L2(�) is continuous by (3.4), and so there
exists a positive constant B, independent of u, such that ‖u(t, ·)‖2 � B‖u(t, ·)‖q(·).
Combining the last two inequalities, we get

‖u(t, ·)‖2
2 � c5{‖u(t, ·)‖q−

q(·) + H (t)}, (3.16)

where c5 = (1 + 1/H0)max{1, Bq−} > 0, being H � H0 in J by (3.8). Then,
using (3.15) and (3.16) in the preceding estimate of Z ′, we find that

Z ′ � k
{
λ(1 − r)− �−m′

H r−r
0

}
H −rH ′

+ψ(c̃3 − |ψ ′/ψ |)‖ut‖2
2 + ψ

{
γ p+ − c5|ψ ′/ψ |}H (3.17)

+ψ
{

c̃2 − c5|ψ ′/ψ | − (c4�)
mH −r

0

}
‖u(t, ·)‖q−

q(·).

There is T1 ∈ J such that 2|ψ ′/ψ | � min{c̃3, γ p+/c5, c̃2/c5} for all t ∈ J1 =
[T1,∞), since ψ ′ = o(ψ) as t → ∞. Then we take � > 0 so small that 4(c4�)

m �
c̃2H

r
0 and λ > 0 so large that λ � max{H r−r

0 /�m′
(1 − r), 1} and Z (T1) > 0. In

conclusion, we have shown that for almost all t ∈ J1

Z ′(t) � Cψ(t)
{
H (t)+ ‖ut (t, ·)‖2

2 + ‖u(t, ·)‖q−
q(·)

}
, (3.18)

where 2C = min{c̃2/2, c̃3, γ p+}. Since k(T1),H (T1) > 0, in particular Z (t) �
Z (T1) > 0 for all t ∈ J1.

On the other hand, from the definition of Z , we obtain

Z α �
(
λkH 1/α + ψ |〈ut , u〉|

)α
� 2α−1 {

(λk)αH + ψα‖ut‖α2 ‖u‖α2
}
, (3.19)

where α = 1/(1 − r). Of course, α ∈ (1, 2) by (3.13) and the choice of r . Put
ν = 2/α, so that ν > 1. Furthermore,

1

αν′ = ν − 1

αν
= 1

α
− 1

2
= 1

2
− r >

1

q−
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by (3.13), and soαν′ < q−. Thus, using the relation zξ � (z+1) � (1+1/η)(η+z)
once more, with z = ‖u(t, ·)‖q−

2 , ξ = αν′/q− < 1 and η = H0, it follows that

‖u(t, ·)‖αν′
2 �(1+1/H0)(H0+‖u(t, ·)‖q−

2 )�c5(H (t)+‖u(t, ·)‖q−
q(·)), (3.20)

by (3.8), where c5 is the same constant as in (3.16). Hence, from (3.19), Young’s
inequality and (3.20), for all t ∈ J1

Z (t)α � 2α−1 [max{λk(t), ψ(t)}]α
{
H (t)+ ‖ut (t, ·)‖αν2 + ‖u(t, ·)‖αν′

2

}
� D [max{λk(t), ψ(t)}]α

{
H (t)+ ‖ut (t, ·)‖2

2 + ‖u(t, ·)‖q−
q(·)

}
,

where D = 2α−1(c5 +1). Combining this with (3.18) and λ � 1, we obtain almost
everywhere in J1

Z −αZ ′ � C

D
ψ [max{λk, ψ}]−α � c6ψ [max{k, ψ}]−α ,

where c6 = C/Dλα . Finally, since α = 1 + θ , being r = θ/(1 + θ), by (3.6)2 we
see that Z cannot be global. This completes the proof. 
�
Remark 3.2. In [17 and 23–25], assumptions (F1)–(F3) and (Q) are required in
a stronger form and the main structure geometry there implies in particular

inf
t∈R

+
0

A u(t) � w1 � 0, Eu(0) < E1 =
(

1 − γ p+
q−

)
w1. (3.21)

Observe that condition (3.21)1 is always true and so Fu(t) � w1 − Eu(0) as noted
in Remark 3.1. Hencew2 > w1 − E1 = γ p+w1/q− when (3.21) holds. This yields
Ẽ1 > E1 � 0. Therefore (3.5) is always weaker than (3.21). Of course in (3.21)
the case w1 > 0 is more interesting, see [23], while the case w1 = 0 was early
treated in [17].

From the first part of Theorem 3.1 under (F1)–(F2) it is evident that if u ∈ K
is a solution of (1.1) in R

+
0 ×� and w2 = inf t∈R

+
0

Fu(t) � 0 then Eu(0) � Ẽ1.

Hence, being w1 � Eu(0)+w2 � Eu(0) by (3.1), also the case (3.21) can never
occur, since E1 < w1.

4. Applications of the main theorem

In this section we present useful consequences of Theorem 3.1 and a qualitative
analysis, interesting in several applications. Suppose that M and f verify

M(τ ) = a + bγ τγ−1, a, b � 0, a + b > 0, γ

{
> 1, if b > 0,

= 1, if b = 0,

f (t, x, u) = g(t, x)|u|σ(x)−2u + c(x)|u|q(x)−2u,

(4.1)
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where σ , q ∈ C+(�), c ∈ L∞(�) is a non-negative function, g ∈ C(R+
0 × �) is

differentiable with respect to t and gt ∈ C(R+
0 ×�); moreover

σ+ � q−, max{2, γ p+} < q− � q � p∗ in �, and c = ‖c‖∞ > 0;
0 � −g(t, x), gt (t, x) � h(x) in R

+
0 ×�, for some h ∈ L1(�),

g(t, ·) ∈ L℘(·)(�) in R
+
0 , where

℘(x)=
{

q(x)/[q(x)− σ(x)], if σ+ < q−,
∞, if σ+ = q−.

(4.2)

Lemma 4.1. Assume that M and f verify (4.1) and (4.2). Then (M ), (F1), (F2)

and (F3)-(i) hold. Furthermore, if in addition

σ+ < q− and c = ess inf� c(x) > 0, (4.3)

then (F3)-(i i) is verified, and in particular

〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 � q−Fφ(t) f or all φ ∈ K and t ∈ R
+
0 . (4.4)

Proof. Of course (M ) is satisfied. For any φ ∈ K ,

|( f (t, x, φ(t, x)), φ(t, x))| � −g(t, x)|φ(t, x)|σ(x) + c |φ(t, x)|q(x),
so that by (4.2) we have ( f (t, x, φ(t, x)), φ(t, x)) ∈ L1(�) for all t ∈ R

+
0 and

〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 ∈ L1
loc(R

+
0 ). Analogously, being

F(t, x, φ(t, x)) = g(t, x)
|φ(t, x)|σ(x)

σ (x)
+ c(x)

|φ(t, x)|q(x)
q(x)

,

then also F(t, x, φ(t, x)) ∈ L1(�) for all t ∈ R
+
0 . Hence (F1) holds. Furthermore,

for any φ ∈ K

Fφ(t) = F (t, φ) =
∫
�

{
g(t, x)

|φ(t, x)|σ(x)
σ (x)

+ c(x)
|φ(t, x)|q(x)

q(x)

}
dx . (4.5)

The same expression holds for F (t, w) when (t, w) ∈ R
+
0 × W 1,p(·)

0 (�). Thus,
differentiation under the integral sign gives

Ft (t, w) =
∫
�

gt (t, x)
|w(x)|σ(x)
σ (x)

dx .

Hence Ft � 0 in R
+
0 × W 1,p(·)

0 (�) by (4.2), and so (F2) is fulfilled.
By (4.5) for all φ ∈ K

Fφ(t) �
∫
�

c(x)
|φ(t, x)|q(x)

q(x)
dx � c

q−
ρq(·)(φ(t, ·)), (4.6)

being g � 0. Hence, (F3)-(i) holds for all F � 0, taking c1 = c/q−.
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Assume now also (4.3) and put ε0 = q− − σ+ > 0, so that for all ε ∈ (0, ε0)

and φ ∈ K , by (4.1)–(4.5), we have

〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 − (q− − ε)Fφ(t)

�
(

1 − q− − ε

σ+

)∫
�

g(t, x)|φ(t, x)|σ(x) dx + ε

q−

∫
�

c(x)|φ(t, x)|q(x) dx

� cε

q−
ρq(·)(φ(t, ·)).

Thus, (F3)-(ii) is fulfilled, with c2 = c ε/q− > 0 and c given in (4.3). Letting
ε → 0 in the above inequality, we get at once (4.4). 
�

In [23–25] assumptions (4.1)–(4.3) trivially hold, with g ≡ 0, c ≡ 1, p ≡ 2
and also q, γ constant with q > 2γ , and of course γ = 1 in [23,24].

Lemma 4.2. Assume that the continuous damping function Q given in the Intro-
duction verifies also the pointwise condition (Q1) There exist constants tQ � 0,
m > 1 and κ � 0, with m + κ < q−, and a non-negative function d ∈ C(R+

0 →
Lq−/(q−−κ−m)(�)) such that

|Q(t, x, u, v)| � [d(t, x)|u|κ ]1/m(Q(t, x, u, v), v)1/m′
(4.7)

whenever (t, x, u, v) ∈ [tQ,∞)×�× R
N × R

N . Then (Q) is satisfied along any
solution u of the problem (1.1), with T � tQ and δ(t) = ‖d(t, ·)‖q−/(q−−κ−m) ∈
C(R+

0 ), provided that (F2) holds.

Proof. Clearly 〈Q(t, ·, u(t, ·), ut (t, ·)), ut (t, ·)〉 � 0 for each t � 0 along any
solution u ∈ K of the problem (1.1), and so Du � 0, since also Ft u � 0 in R

+
0 by

(F2), and Du is finite in R
+
0 along u by (B)-(i).

By (4.7) and Hölder’s inequality, for each t � tQ , along any solution u of (1.1),

|Q(t, ·, u(t, ·), ut (t, ·))‖q ′−

�
(∫
�

{
d(t, x)|u(t, x)|κ} q−

q−−m dx

) q−−m
mq− 〈Q(t, ·, u, ut ), ut (t, ·)〉1/m′

,

where q ′− = (q−)′ = q+/(q+−1). On the other hand, applying once again Hölder’s
inequality, we find that

∫
�

{
d(t, x)|u(t, x)|κ} q−

q−−m dx �
(∫

�

d
q−

q−−m−κ dx

) q−−m−κ
q−−m

(∫
�

|u|q− dx

) κ
q−−m

.

Hence, combining the last two inequalities, we get by (F2)

‖Q(t, ·, u(t, ·), ut (t, ·))‖q ′− �‖d(t, ·)‖
1
m

q−
q−−κ−m

‖u(t, ·)‖
κ
m
q−〈Q(t, ·, u, ut ), ut (t, ·)〉

1
m′

� δ(t)1/m‖u(t, ·)‖κ/m
q− Du(t)1/m′

,
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where δ(t) = ‖d(t, ·)‖q−/(q−−κ−m) ∈ C(R+
0 ) by (Q1), so that δ ∈ L∞

loc(R
+
0 ),

while q ′− = q+/(q+ − 1), as above. By the obvious continuity of the embed-
ding Lq(·)(�) ↪→ Lq−(�) there is a constant B1 > 0 independent of u such that
‖u(t, ·)‖q− � B1‖u(t, ·)‖q(·) for all t ∈ R

+
0 . Hence

|〈Q(t, ·, u, ut ), u(t, ·)〉| � ‖Q(t, ·, u, ut )‖q ′−‖u(t, ·)‖q−

� q1δ(t)
1/m‖u(t, ·)‖1+κ/m

q(·) Du(t)1/m′
,

(4.8)

where q1 = B1+κ/m
1 . 
�

Of course in [23–25] assumption (Q1) is automatic, with κ ≡ 0 and 1 < m < q,
being there q− = q+ = q.

Let us now distinguish two cases, depending on whether b is zero or not. Of
course, when b > 0 and a = 0 we are in the so called degenerate case, which is
in our context more interesting. Recall that we have assumed γ > 1 when b > 0,
while γ = 1 if b = 0, and put s = b if b > 0, while s = a if b = 0.

Lemma 4.3. Assume (4.1) and (4.2). If u ∈ K is a solution of (1.1) in R
+
0 × �,

then for all t ∈ R
+
0

Eu(t) � s

(�p+)γ
min

{
υ(t)p− , υ(t)p+}γ − c

q−
max{υ(t)q− , υ(t)q+},

where υ(t) = ‖u(t, ·)‖q(·),

� = max
{
λ

p+
q(·), λ

p−
q(·), (sγ /cpγ−1

+ )1/γ
}

(4.9)

and λq(·) is the constant introduced in (2.3).

Proof. Let u ∈ K be a solution of (1.1) in R
+
0 ×�. By (2.1) and (2.3) we have

A u(t) � M (I u(t)) � a

p+
ρp(·)(Du(t, ·))+ b

pγ+

[
ρp(·)(Du(t, ·))]γ

� a

p+
min

{
‖Du(t, ·)‖p−

p(·), ‖Du(t, ·)‖p+
p(·)

}

+ b

pγ+
min

{
‖Du(t, ·)‖γ p−

p(·) , ‖Du(t, ·)‖γ p+
p(·)

}
(4.10)

� a

�p+
min

{
‖u(t, ·)‖p−

q(·), ‖u(t, ·)‖p+
q(·)

}

+ b

(�p+)γ
min

{
‖u(t, ·)‖γ p−

q(·) , ‖u(t, ·)‖γ p+
q(·)

}
� s

(�p+)γ
min

{
υ(t)p− , υ(t)p+}γ

.

Therefore, since Eu(t) � A u(t)− Fu(t) for each t ∈ R
+
0 by (3.1), the assertion

follows at once by (4.10) and (4.6). 
�
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From Lemma 4.3 we obtain

Eu(t) � ϕ(υ(t)) for all t ∈ R
+
0 , (4.11)

where ϕ : R
+
0 → R is defined by ϕ(υ) = ϕ1(υ) if υ ∈ [0, 1], while ϕ(υ) = ϕ2(υ)

if υ � 1, with

ϕ1(υ) = s

(�p+)γ
υγ p+ − c

q−
υq− , ϕ2(υ) = s

(�p+)γ
υγ p− − c

q−
υq+ .

It is easy to see that ϕ attains its maximum at

υ1 = a1/(q−−γ p+)
1 , where a1 = sγ p+

c(�p+)γ
. (4.12)

The choice of� in (4.9) guarantees that υ1 ∈ (0, 1]. Clearly ϕ2 takes its maximum
at v2 = a1/(q+−γ p−)

2 , where a2 = p−q−a1/p+q+ � a1 � 1. Hence ϕ is strictly
decreasing for υ � υ1, with ϕ(υ) → −∞ as υ → ∞. Finally,

ϕ(υ1) =
(

1 − γ p+
q−

)
w1 = E1 > 0, where w1 = sυγ p+

1

(�p+)γ
> 0. (4.13)

Put

� = {(υ, E) ∈ R
2 : υ > υ1, E < E1}.

Theorem 4.1. Assume (4.1), (4.2) and (Q1). If u ∈ K is a solution of (1.1) in
R

+
0 ×�, then w2 = inf t∈R

+
0

Fu(t) > −∞. If, furthermore, Eu(0) < Ẽ1, with Ẽ1

given in (3.5), then w2 > 0 and (υ(t), Eu(t)) ∈ �̃ for all t ∈ R
+
0 , where

�̃ = {(υ, E) ∈ R
2 : υ > υ1, E < Ẽ1}, (4.14)

and υ1 is defined in (4.12). Consequently, if in addition (4.3) holds, then there are
no solutions u ∈ K of the problem (1.1) in R

+
0 ×�, with Eu(0) < Ẽ1, for which

there exist positive functions ψ, k verifying (3.6)–(3.7) as in Theorem 3.1.

Proof. Clearly Lemmas 4.1 and 4.2 are available, so that assumptions (F1), (F2),
(F3)-(i) and (Q) of Theorem 3.1 are satisfied along any solution u of (1.1). The
fact that w2 is finite and positive are an immediate consequence of Theorem 3.1.
By (F2), (Q1) and (B)-(ii) clearly Eu(t) � Eu(0) < Ẽ1 for all t ∈ R

+
0 .

Suppose now that there exists t1 ∈ R
+
0 such that υ(t1) � υ1. Then, by (4.6)

and (2.1)2 we have w2 � Fu(t1) � cυ(t1)q−/q−. On the other hand, A u(t1) �
sυ(t1)γ p+/(�p+)γ by (4.10). Now, by (3.1), (F2), (Q1) and (B)-(ii), it follows
that (

q−
γ p+

− 1

)
c

q−
υ(t1)

q− � Ẽ1 > Eu(0) � A u(t1)− Fu(t1)

� s

(�p+)γ
υ(t1)

γ p+ − c

q−
υ(t1)

q− .

That is υ(t1) >
[
sγ p+/c(�p+)γ

]1/(q−−γ p+) = υ1 by (4.12). This is an obvious
contradiction. Therefore υ(t) > υ1 for all t ∈ R

+
0 , and (υ(t), Eu(t)) ∈ �̃ for all

t ∈ R
+
0 , as required.

The last part of the theorem is again a direct consequence of Theorem 3.1. 
�
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If µ = 0, f is as in (4.1)–(4.3), with g(t, x) = g(x), and Q(t, x, u, 0) = 0 in
(Q1), then any stationary solution u = u(x) of (1.1), with w2 = Fu > 0, has the
property that Eu � Ẽ1, that is Theorem 4.1 can never be applied. Indeed, in this
case Eu, A u and Fu > 0 are constant in t . Hence by (3.1), (3.3) and (4.4), since
〈Au, u〉 = 〈 f (·, u), u〉 being u a stationary solution of (1.1),

Eu =
(

A u

Fu
− 1

)
Fu �

(
q−
γ p+

− 1

)
Fu =

(
q−
γ p+

− 1

)
w2 = Ẽ1,

as claimed.
In special reverse situations in which the external force f is of restoring type,

it is possible to show that if υ(0) < υ1 and Eu(0) < E1, then υ(t) < υ1 and
Eu(t) < E1 for all t ∈ R

+
0 , that is any point (υ(t), Eu(t)) on the trajectory of a

global strong solution u ∈ K must remain in the potential well, see, for example,
[3, Lemma 4.3] and for dissipative wave systems [21, Remark on page 45], as well
as the references therein.

The global nonexistence results, given in [17] and [23–25] in special subcases of
this paper, concern only the region� which is smaller than �̃. Indeed, if Eu(0) <
Ẽ1, under the assumptions of Theorem 4.1, then for all t � 0

υ(t) > υ1, A u(t) >
s

(�p+)γ
min

{
υ

p−
1 , υ

p+
1

}γ = w1 > 0, (4.15)

by (4.10) and (4.13). Hence, E1 < Ẽ1 as already proved in Remark 3.2. In any case
we present also new results under the assumption Eu(0) � E1, the first of which
being the following

Theorem 4.2. Assume (4.1), (4.2) and (Q1). Let u ∈ K be a solution of (1.1) in

R
+
0 × �, such that Eu(0) < E1, with E1 given in (4.13). Then υ1 /∈ υ(R+

0 ) and
w2 = inf t∈R

+
0

Fu(t) �= γ p+w1/q−, where υ1 and w1 are defined in (4.12) and

(4.13), respectively. Moreover, w2 > γ p+w1/q− if and only if υ(R+
0 ) ⊂ (υ1,∞).

Proof. Let u ∈ K be a solution of (1.1) in R
+
0 × �. Then w2 > −∞, as shown

in the first part of Theorem 3.1. Assume also that Eu(0) < E1. We first claim that

υ1 /∈ υ(R+
0 ). Proceed by contradiction and suppose that υ1 ∈ υ(R+

0 ). It follows
that there exists a sequence (t j ) j in R

+
0 such that υ(t j ) → υ1 as j → ∞. By

(4.11) we have E1> Eu(0)� Eu(t j )�ϕ(υ(t j )), which provides E1 > E1 by the
continuity of ϕ ◦ υ, and the claim is proved.

We show that w2 �= γ p+w1/q−. Otherwise, Fu(t) � γ p+w1/q− for all
t ∈ R

+
0 . Therefore, by (3.1) and (4.13), we have(

q−
γ p+

− 1

)
Fu(t) � E1 > Eu(0) � A u(t)− Fu(t),

so that, using (4.6) and (4.10), for each t ∈ R
+
0 we get

c

γ p+
ρq(·)(u(t, ·)) � q−

γ p+
Fu(t) > A u(t) � s

(�p+)γ
min

{
υ(t)p− , υ(t)p+}γ

.
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Hence, if t ∈ R
+
0 and υ(t) � 1, then cυ(t)q−/γ p+ > sυ(t)γ p+/(�p+)γ using

also (2.1), that is υ(t) > υ1. On the other hand, if υ(t) > 1, then automatically
υ(t) > υ1, being υ1 � 1. Hence, υ(t) > υ1 for each t ∈ R

+
0 , so that by (4.10),

we immediately obtain A u(t) > w1 for all t ∈ R
+
0 , where w1 is defined in (4.13).

Consequently, Fu(t) � w1 − Eu(0) > w1 − E1 = γ p+w1/q− for all t ∈ R
+
0

and in turn w2 > γ p+w1/q−. This gives an obvious contradiction.
Suppose thatw2 > γ p+w1/q−. We prove thatυ(R+

0 ) ⊂ (υ1,∞), which imme-

diately gives υ(R+
0 ) ⊂ (υ1,∞), since υ1 /∈ υ(R+

0 ). Assume by contradiction that
there exists t1 ∈ R

+
0 for which υ(t1) � υ1. It follows

Fu(t1) � c

q−
υ(t1)

q− � c

q−
υ

q−
1 = γ p+

q−
w1,

so that w2 � γ p+w1/q−, which is impossible.

On the other hand, if υ(R+
0 ) ⊂ (υ1,∞), then υ(t) > υ1 for all t ∈ R

+
0 . Hence

Fu(t) � w1 − Eu(0) > w1 − E1 = γ p+w1/q− for all t ∈ R
+
0 by (3.1) and in

turn w2 > γ p+w1/q−, as required. 
�
In the next corollary we present an application of both Theorems 3.1 and 4.1.

In particular, we provide sufficient conditions under which assumptions (3.6)–(3.7)
of Theorem 3.1 are satisfied. Let Q = Q(t, x, u, v) be a continuous damping func-
tion as in the Section 1 and assume also that there exists t∗ � 1 such that for all
(t, x, u, v) ∈ [t∗,∞)×�× R

N × R
N

Q(t, x, u, v) = d(t, x)|u|κ |v|m−2v, (4.16)

where κ � 0, m > 1, m + κ < q−, d ∈ C(R+
0 → Lq−/(q−−κ−m)(�)), with

d(t, x) � 0 in R
+
0 ×�. Put δ(t) = ‖d(t, ·)‖q−/(q−−κ−m). Hence,

|Q(t, x, u, v)| = [d(t, x)|u|κ ]1/m[(Q(t, x, u, v), v)]1/m′

for all (t, x, u, v) ∈ [t∗,∞) × � × R
N × R

N , so that (Q1) holds with tQ = t∗.
Now put J = [t∗,∞).

Corollary 4.1. Assume (4.1)–(4.3), (4.16) and that δ(t) � δ1(1 + t)� for each
t ∈ J , for some appropriate numbers δ1 � 1 and � � m − 1. Then there are no
solutions u ∈ K of (1.1) in R

+
0 ×�, with Eu(0) < Ẽ1.

Proof. Let u ∈ K be a solution of (1.1) in R
+
0 × �, with Eu(0) < Ẽ1. All the

structural assumptions of Theorem 4.1 are available, and it remains to provide the
auxiliary functions k and ψ verifying (3.6), with θ0 as in (3.7) to reach the desired
contradiction.

Take k(t) ≡ δm′
1 and ψ(t) = δ1(1 + t)−�/(m−1) for each t ∈ J , so that (3.6)1 is

verified in J . If � � 0, then k(t) � ψ(t) for each t ∈ J , being δ1 � 1. Otherwise,
if � < 0, take S0 � max{t∗, δ1/|�|

1 − 1} so that for all t � S0

ψ(t) � ψ(S0) = δ1(1 + S0)
|�|/(m−1) � δm′

1 = k(t).
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Hence, for each t � S0 we have

ψ(t)[max{k(t), ψ(t)}]−(1+θ) =
{
δ

1−m′(1+θ)
1 (1 + t)−�/(m−1), if � � 0,

δ−θ1 (1 + t)�θ/(m−1), if � < 0.

Clearly (3.6)2 is verified for all θ ∈ (0, θ0), with θ0 as in (3.7), whenever � � 0
since � � m − 1. While, if � < 0, then we choose θ ∈ (0, θ0), so small that
θ � (m − 1)/|�|, that is so small that (3.6)2 holds. 
�

Observe that even in the case � < 0 the function δ in Corollary 4.1 does not need
to be non-increasing in [S0,∞), as the function δ(t) = δ1| sin t |(1 + t)� shows. As
a matter of fact, δ obviously verifies the relation δ(t) � δ1(1+ t)�, but it approaches
zero as t → ∞ oscillating.

From now on in the section we assume for simplicity the structure assumptions
(4.1)–(4.3) and (4.16), with δ(t) � δ1(1 + t)� for each t ∈ J and some δ1 � 1,
with � � m − 1.

The following corollary extends and generalizes Theorems 5 and 6 of [17], the
first part of Theorem 4 of [23] and Theorem 3.1 of [24], and Theorems 4.3 and 4.5
of [25].

Corollary 4.2. Problem (1.1) does not possess solutions u ∈ K in R
+
0 ×�, with

‖u(0, ·)‖q(·) > υ1, Eu(0) < E1, (4.17)

where E1 is defined in (4.13).

Proof. Assume by contradiction that u ∈ K is a solution of (1.1) in R
+
0 ×�, ver-

ifying (4.17). By Theorem 4.2 then w2 > γ p+w1/q−. Hence Eu(0) < E1 < Ẽ1
and the contradiction follows at once by an application of Corollary 4.1. 
�
Proposition 4.1. If u ∈ K is a solution of (1.1) in R

+
0 × �, with Eu(0) � E1,

where E1 is defined in (4.13), then

w2 � γ p+
q−

w1. (4.18)

Proof. Otherwise w2 > γ p+w1/q−, so that Eu(0) < Ẽ1, and u could not be
global by Corollary 4.1. 
�

In the sequel of the section we assume also
(D) There exists t∗ > 0 such that either

(i) gt (t, x) � g0(t) > 0 for each (t, x) ∈ [0, t∗)×�, or
(ii) φ ∈ K and 〈Q(t, ·, φ, φt ), φt 〉 = 0 in [0, t∗] implies either φ(t, ·) ≡ 0 or

φt (t, ·) ≡ 0 for all t ∈ [0, t∗],
which allows us to extend and generalizes the second part of Theorems 4 of [23]
and 3.1 of [24].

Theorem 4.3. Problem (1.1) does not possess solutions u ∈ K in R
+
0 ×�, with

‖u(0, ·)‖q(·) > υ1, Eu(0) = E1. (4.19)
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Proof. Assume by contradiction that u ∈ K is a global solution of (1.1) in R
+
0 ×�,

verifying (4.19). By Proposition 4.1 we havew2 � γ p+w1/q−. We first claim that
w2 < γ p+w1/q− cannot occur. Otherwise there exists t0 such that Fu(t0) <
γ p+w1/q−, so that by (B)-(ii) and (3.1)

w1 − Fu(t0) > E1 = Eu(0) � Eu(t0) � A u(t0)− Fu(t0),

and by (4.10), (4.12) and (4.13) it is not hard to see that υ(t0) < υ1. Hence
t0 > 0 by (4.19) and by the continuity of υ there exists s ∈ (0, t0) such that
υ(s) = υ1. The above argument and (4.6) show that E1 = Eu(0) � Eu(s) �
w1 − cυq−

1 /q− = E1. In other words, Eu(s) = E1 and
∫ s

0 Du(τ )dτ = 0 by
(B)–(i i). Consequently Du ≡ 0 in [0, s] and so, by (F2) and (4.16), we obtain
〈Q(t, ·, u(t, ·), ut (t, ·)), ut (t, ·)〉 = 0 and Ft u(t) = 0 for all t ∈ [0, s].

Now, if (D)-(i) holds, then

0 = Ft u(t) =
∫
�

gt (t, x)
|u(t, x)|σ(x)

σ (x)
dx � g0(t)

σ+
ρσ(·)(u(t, ·)) � 0

for each t ∈ [0, s0], where s0 = min{t∗, s}. Therefore ρσ(·)(u(t, ·)) ≡ 0 and
in turn u ≡ 0 in [0, s0] × �, by (2.1). But this occurrence is impossible, since
‖u(0, ·)‖q(·) = υ(0) > υ1 > 0 by (4.19)1, so that we reach a contradiction.

While, if (D)-(ii) holds, since 〈Q(t, ·, u(t, ·), ut (t, ·)), ut (t, ·)〉 = 0 for all
t ∈ [0, s0], we get that either u(t, ·) = 0 or ut (t, ·) = 0 for all t ∈ [0, s0], where
as above s0 = min{t∗, s}. Again, as already shown, the first case cannot occur
since υ(0) > υ1. In the latter, u is clearly constant with respect to t in [0, s0],
and so u(t, x) = u(0, x) for each t ∈ [0, s0]. Taking φ(t, x) = u(0, x) in the
Distribution Identity (A), then for each t ∈ [0, s0] we have t〈Au(0, ·), u(0, ·)〉 =∫ t

0 〈 f (τ, ·, u(0, ·)), u(0, ·)〉dτ , since 〈Q(t, ·, u(0, ·), 0), u(0, ·)〉 = 0 by (4.8), be-
ing Du = 0 in [0, s0]. Therefore 〈Au(0, ·), u(0, ·)〉 = 〈 f (t, ·, u(0, ·)), u(0, ·)〉
for each t ∈ [0, s0], and so 〈A(u(0, ·)), u(0, ·)〉 = 〈 f (0, ·, u(0, ·)), u(0, ·)〉. Now
γ p+A u(0) � q−Fu(0) by (3.3) and (F3). On the other hand, E1 = Eu(0) =
A u(0) − Fu(0) by (3.1), since ut (0, ·) = 0. By (4.15) and (4.13) we have
A u(0) > w1 > 0, and so

E1 �
(

1 − γ p+
q−

)
A u(0) >

(
1 − γ p+

q−

)
w1 = E1

by (4.13). This contradiction shows the claim.
Hencew2 = γ p+w1/q−. In particular Fu(t) � γ p+w1/q− for all t ∈ R

+
0 and

we assert that equality cannot occur at a finite time. Indeed, if there is s such that
Fu(s) = γ p+w1/q−, then υ(s) � υ1 by (4.6) and (2.1). But υ(s) > υ1 would
imply Eu(0) > E1, contradicting (4.19). Hence Fu(s) = γ p+w1/q−, υ(s) = υ1
and so Eu(s) = E1. From now on we can repeat the argument above in corre-
spondence at such s and assumption (D) will produce the required contradiction
again.

Therefore it remains to consider the case w2 = γ p+w1/q−, Fu(t) > w2 and
υ(t) > υ1 for all t ∈ R

+
0 . A continuity argument shows at once that

lim inf
t→∞ Fu(t) = w2.
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On the other hand by (3.1) and (B)-(ii) we have w1 − Fu(t) < Eu(t) � E1,
so that lim supt→∞ Eu(t) = E1. Hence

∫ ∞
0 Du(τ )dτ = 0 by monotonicity. In

particular Du ≡ 0 in R
+
0 , which is again impossible by (D) using the argument

already produced. This completes the proof. 
�
Remark 4.1. The possibility to cover the case (4.19) was first discovered by
Vitillaro [23], but only for strong solutions. Indeed, to cover (4.19) in [23,24]
the energy conservation law was considered with the equality sign, as in (B)s-(ii),
even if not explicitly stated, as for example, in the proof of case (a) of Theorem 3
of [23]. Furthermore, in [23,24] essentially the autonomous case was treated. It is
interesting to note that Theorems 3 and 4 of [23] covers only the case when Q > 0
near 0, while in Theorem 5.4 we are able to consider even the situation in which
Q ≡ 0, provided that (D)-(i) is valid. The proof of Theorem 4.3 differs from that
of Theorems 3 and 4 of [23], being based on Proposition 4.1 and on Theorem 3.1.

Appendix: The linear dissipation case

In this section we provide a non-continuation result for (1.1) when (F1) and
(F2) hold as in Section 3, while (F3) is replaced by a weaker condition provided
that the damping term is linear, that is Q(t, x, u, v) = Q(t)v. More precisely, (1.1)
reduces simply to{

utt − M (I u(t))�p(x)u + µ|u|p(x)−2u + Q(t)ut = f (t, x, u),

u(t, x) = 0 on R
+
0 × ∂�,

(5.1)

where as before u = (u1, . . . , uN ) = u(t, x) is the vectorial displacement, N � 1,
the domain � is bounded in R

n and µ � 0. In place of (Q) we assume throughout
the section the stronger condition
(Q) Q ∈ C1(R+

0 ), wi th Q,−Q′ � 0,

which indeed implies (Q1), see the next Remark 5.1.
The function space K is given in Section 2, while Eφ, A φ and Aφ, withφ ∈ K ,

are the same functions introduced in (3.1) and (3.2). As in Section 3 we define a
solution of (5.1) as a function u ∈ K satisfying the two conditions:

(A) Distribution Identity

〈ut , φ〉 ]t
0 =

∫ t

0
{ 〈ut , φt 〉 − M(I u(τ ))〈|Du|p(·)−2 Du, Dφ〉

−µ〈|u|p(·)−2u, φ〉 −〈Q(τ )ut − f, φ〉} dτ

for all t ∈ R
+
0 and φ ∈ K ;

(B) Energy Conservation

Eu(t) � Eu(0)−
∫ t

0

{
Q(τ )‖ut (τ, ·)‖2

2 + Ft u(τ )
}

dτ

for all t ∈ R
+
0 .
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By (F1), (F2) and (Q) properties (A) and (B) are meaningful. Instead of (F3)

here we assume the weaker assumption: there exists q ∈ C+(�), satisfying (3.4),
such that
(F3)

′ 〈 f (t, ·, φ(t, ·)), φ(t, ·)〉 � q−Fφ(t) for (t, φ) ∈ R
+
0 × K .

See (4.4).

Theorem 5.1. Suppose that (M ), (Q), (F1) and (F2) hold true. If u ∈ K is a
solution of (5.1) in R

+
0 ×�, then w2 = inf t∈R

+
0

Fu(t) > −∞.

Finally, assume that 2 < γ p+ and also that (F3)
′ is satisfied. Then there are

no solutions u ∈ K of (5.1) in R
+
0 ×�, with Eu(0) < Ẽ1, where Ẽ1 is defined in

(3.5).

Proof. The first part of the result is just a direct consequence of Theorem 3.1, since
clearly here (Q(t)v, v) = Q(t)|v|2 � 0 for all (t, v) ∈ R

+
0 × R

N .
Assume now that 2 < γ p+ and also (F3)

′ holds, and by contradiction that
there exists a solution u ∈ K of (5.1) in R

+
0 ×�, with Eu(0) < Ẽ1. Then w2 > 0

and Ẽ1 > 0 by virtue of (3.4) and (3.5). Define in R
+
0

G (t) = ‖u(t, ·)‖2
2 +

∫ t

0
{Q(τ )‖u(τ, ·)‖2

2 + (τ − t)Q′(τ )‖u(τ, ·)‖2
2}dτ

+(T0 − t)Q(0)‖u(0, ·)‖2
2 + β(t + β0)

2,

where T0, β, β0 > 0 are constants which will be fixed later. Since Q ∈ C1(R+
0 ), it

results

G ′(t) = 2〈u(t, ·), ut (t, ·)〉 + Q(t)‖u(t, ·)‖2
2−Q(0)‖u(0, ·)‖2

2

−
∫ t

0
Q′(τ )‖u(τ, ·)‖2

2 dτ + 2β(t + β0)

= 2〈u(t, ·), ut (t, ·)〉 + 2
∫ t

0
Q(τ )〈u(τ, ·), ut (τ, ·)〉dτ + 2β(t + β0).

From the Distribution Identity (A), taking φ = u ∈ K , it follows that

1

2
G ′′(t) = ‖ut (t, ·)‖2

2 − Q(t)〈ut (t, ·), u(t, ·)〉 − 〈Au(t, ·), u(t, ·)〉
+〈 f (t, ·, u(t, ·)), u(t, ·)〉 + Q(t)〈u(t, ·), ut (t, ·)〉 + β

= ‖ut (t, ·)‖2
2 − 〈Au(t, ·), u(t, ·)〉 + 〈 f (t, ·, u(t, ·)), u(t, ·)〉 + β.

Now observe that, thanks to (3.3) and (F3)
′, we have

〈Au(t, ·), u(t, ·)〉 − 〈 f (t, ·, u(t, ·)), u(t, ·)〉 � γ p+A u(t)− q−Fu(t).

Hence, combining these formulas with the definition (3.1) of the energy function,
we get

1

2
G ′′(t) � ‖ut (t, ·)‖2

2 − γ p+A (u)+ q−Fu(t)+ β

=
(

1 + γ p+
2

)
‖ut (t, ·)‖2

2 + (q− − γ p+)Fu(t) (5.2)

−γ p+Eu(t)+ β.
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Now (q− − γ p+)Fu(t) � (q− − γ p+)w2 = γ p+ Ẽ1 by (3.5), and also Eu(t) �
Eu(0)− ∫ t

0 Q(τ )‖ut (τ, ·)‖2
2 dτ by the Energy Conservation (B) and (F2). There-

fore

G ′′(t) � (2 + γ p+)
{
‖ut (t, ·)‖2

2 + β
}

+ 2γ p+
∫ t

0
Q(τ )‖ut (τ, ·)‖2

2 dτ, (5.3)

where β = 2{Ẽ1 − Eu(0)} > 0 by (3.5). Take β0 so large that G ′(0) = 2〈u(0, ·),
ut (0, ·)〉 + 2ββ0 > 0. Then, since Q is non-negative in R

+
0 , it results

G ′′, G ′, G > 0 in R
+
0 .

We assert that

G G ′′ − α G ′2 � 0 in [0, T0], (5.4)

for any T0 > 0, where α = (2 + γ p+)/4. Put

A = ‖u(t, ·)‖2
2 +

∫ t

0
Q(τ )‖u(τ, ·)‖2

2 dτ + β(t + β0)
2,

B = 1
2 G ′ and C = ‖ut (t, ·)‖2

2 + ∫ t
0 Q(τ )‖ut (τ, ·)‖2

2 dτ + β. Since Q and −Q′ are
non-negative in R

+
0 by (Q), we have

A � G in [0, T0]. (5.5)

Moreover, by (5.3) and the fact that 2γ p+ > γ p+ + 2, being γ p+ > 2, we get

C � G ′′/(2 + γ p+) in R
+
0 . (5.6)

Observe that for all (ξ, η) ∈ R
2 and t ∈ R

+
0

Aξ2 + 2Bξη + Cη2 = ‖ξu(t, ·)+ ηut (t, ·)‖2
2 +

∫ t

0
Q(τ )‖ξu(τ, ·)

+ηut (τ, ·)‖2
2 dτ + β {(t + β0)ξ + η}2 � 0,

because Q is non-negative in R
+
0 . Thus AC−B

2 � 0. Hence, (5.4) holds by virtue
of (5.5), (5.6) and the fact that A, C > 0.

Clearly α > 1 since γ p+ > 2 by assumption. Now (5.4) can be written as
(G −αG ′)′ � 0, so that

G ′(t)
G α(t)

� G ′(0)
G α(0)

> 0 for t ∈ [0, T0].

This is a Riccati inequality with blow up time

T <
1

α − 1
· G (0)

G ′(0)
. (5.7)
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Consequently, if T0 is chosen as the right-hand side of the above inequality we
have a contradiction. In fact, since G (0) depends linearly on T0, this gives an eas-
ily solved equation for T0, the solution being positive for all β0 large enough, for
example, whenever

ββ0 >
2

γ p+ − 2
Q(0)‖u(0, ·)‖2

2 − 〈u(0, ·), ut (0, ·)〉,

where β = 2{Ẽ1 − Eu(0)} > 0. This completes the proof. 
�
Remark 5.1. The next result gives new information only when γ p+ � 2 and (F3)

does not hold. Otherwise it is a strict consequence of either Theorem 5.1 when
γ p+ > 2 or Theorem 3.1 if (F3) holds. Indeed, for linear damping functions,
satisfying (Q), condition (Q1) of Section 4 is verified, with m = 2, κ = 0 and
δ(t) = |�|(q−−2)/q− Q(t), and so (Q) holds. Furthermore, in Theorem 3.1 we can
choose ψ = 1 and k = max{|�|(q−−2)/q− Q(0), 1}, so that (3.6) is automatic for
any θ ∈ (0, θ0), where now θ0 = (q− − 2)/(q− + 2).

However, Theorem 5.1 is not completely contained in Theorem 3.1, since (F3)
′

is weaker than (F3)-(ii) even when (F3)-(i) holds, as the example (4.1), (4.2) shows.
Indeed, any function f verifying (4.1), (4.2) satisfies (F1), (F2), (F3)

′ and (F3)-
(i), but not in general (F3)-(ii), when (4.3) does not hold; while the validity of
(4.1)–(4.3) implies (4.4), which is exactly (F3)

′.
We note in passing that even for linear damping the case (F3)

′ was not covered
in [23–25], while first appears in [22].

Theorem 5.2. Suppose that (M ), (Q), (F1), (F2) and (F3)
′ hold. Then there are

no solutions u ∈ K of (5.1) in R
+
0 ×�, satisfying (3.21).

Proof. Assume by contradiction that there exists a solution u ∈ K of problem (5.1)
in R

+
0 ×�, satisfying (3.21). Define in R

+
0 the same function G as in Theorem 5.1,

obtaining in place of (5.2) the estimate

G ′′(t) � (2 + q−) ‖ut (t, ·)‖2
2 + 2(q− − γ p+)A u(t)− 2q−Eu(t)+ 2β.

Using the fact that (q− − γ p+)A u(t) � (q− − γ p+)w1 = q−E1 by (3.21), from
the previous relation, in place of (5.3), we get

G ′′(t) � (2 + q−)
{
‖ut (t, ·)‖2

2 + β
}

+ 2q−
∫ t

0
Q(τ )‖ut (τ, ·)‖2

2 dτ, (5.8)

where now β = 2{E1 − Eu(0)} > 0. From here on the proof is the same as that of
Theorem 5.1, with q− in place of γ p+ and α = (2 + q−)/4. Again α > 1, since
q− > 2 by (3.4). 
�
Remark 5.2. In all Theorems 3.1, 5.1 and 5.2, as well as in their consequences, the
trivial case Q ≡ 0 can be included.
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It is clear from the proofs of Theorems 5.1 and 5.2 that it is possible to find an
upper bound for the blow up time T by virtue of (5.7). Indeed, by the choice of β0

T0 = ‖u(0, ·)‖2
2 + ββ2

0

2(α − 1)(ββ0 − a0)
, a0 = Q(0)‖u(0, ·)‖2

2

2(α − 1)
− 〈u(0, ·), ut (0, ·)〉,

where α = (2 + γ p+)/4 > 1, β = 2{Ẽ1 − Eu(0)} > 0 in Theorem 5.1, while
α = (2 + q−)/4 > 1, β = 2{E1 − Eu(0)} > 0 in Theorem 5.2. Similar results
were given in [25, Theorem 3.4], when Q ≡ 1.

It is worth noting that in the standard degenerate Kirchhoff case in which p ≡ 2
and γ > 1, the restriction 2 < γ p+ is automatic. Hence Theorem 5.1 fits fairly
well in the main prototype of the paper.

As a natural application of Theorems 5.1 and 5.2 and of Remark 5.1 from now
on we assume the validity of (4.1) and (4.2) on f and M . As in Section 4 we
distinguish two cases, depending on whether b is zero or not. Let s = b and γ > 1
if b > 0, while s = a and γ = 1 if b = 0. Of course we are much more interested in
the degenerate case a = 0, when an effective Kirchhoff term arises in the system.
Lemma 4.3 and Theorem 4.2 continue to hold and consequently (4.10)–(4.13) are
still available.

Theorem 5.3. If u ∈ K is a solution of problem (5.1) in R
+
0 × �, then

w2 = inf t∈R
+
0

Fu(t) > −∞. If, in addition, Eu(0) < Ẽ1, with Ẽ1 given as

in (3.5), then w2 > 0, Ẽ1 > 0 and (υ(t), Eu(t)) ∈ �̃ for all t ∈ R
+
0 , where �̃ is

defined in (4.14).
There are no solutions u ∈ K of (5.1) in R

+
0 × �, if either 2 < γ p+ and

Eu(0) < Ẽ1, or γ p+ � 2 and Eu(0) < E1.

Proof. The first part is a consequence of the first part of Theorem 5.1. The second
part can be proved exactly as in Theorem 4.1, using (B) in place of (B)-(ii). The last
part of the result is now a direct consequence of either Theorem 5.1 or Theorem 5.2.


�
Corollary 5.1. If u ∈ K is a solution of (5.1) in R

+
0 ×�, with Eu(0) � E1, then

(4.18) holds provided that 2 < γ p+.
While there are no solutions u ∈ K of (5.1) in R

+
0 ×� when (4.17) holds.

Proof. Both statements can be proved exactly as Proposition 4.1 and Corollary 4.2
using Theorem 5.3 in place of Corollary 4.1. 
�

In this context condition (D)-(ii) of Section 4 reduces simply to the request that
Q > 0 in [0, t∗).

Theorem 5.4. If 2 < γ p+ and also (D) holds, then problem (5.1) does not possess
solutions u ∈ K in R

+
0 ×�, satisfying (4.19).

Proof. The proof is exactly as for Theorem 4.3, with the use of the first part of
Corollary 5.1 instead of Proposition 4.1. 
�
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As in Section 3 we say that u ∈ K is a strong solution of (5.1) if u satisfies the
Distribution Identity (A), while (B) is replaced by the Strong Energy Conservation
(B)s, that is Eu(t) = Eu(0)− ∫ t

0

{
Q(τ )‖ut (τ, ·)‖2

2 + Ft u(τ )
}

dτ for all t ∈ R
+
0 .

We already noted in Section 3 the importance to consider (weak) solutions.

Theorem 5.5. If 2 � γ p+ and also (D) holds, then problem (5.1) does not possess
strong solutions u ∈ K in R

+
0 ×�, satisfying (4.19).

Proof. Assume by contradiction that u ∈ K is a strong solution in R
+
0 ×� of (5.1),

satisfying (4.19). First we prove that there are no points s > 0 such that υ(s) = υ1.
Otherwise Eu(s) = E1 and, as shown in the proof of Theorem 4.3, assumption
(D)would provide a contradiction. Hence υ(t) > υ1 and Eu(t) < E1 for all t > 0
by an obvious continuity argument and (B)s. In particular, this implies (4.15). Now
fix t0 > 0, so that

inf
t∈R

+
0

A u(t) � w1 and Eu(t0) < E1, (5.9)

where w1 and E1 are given in (4.13). Put I = [t0,∞) and define for t ∈ I ,

G (t) = ‖u(t, ·)‖2
2 +

∫ t

t0

{
Q(τ )‖u(τ, ·)‖2

2 +(τ − t)Q′(τ )‖u(τ, ·)‖2
2

}
dτ

+(T0 + t0 − t)Q(t0)‖u(t0, ·)‖2
2 + β(t − t0 + β0)

2,

where T0, β, β0 > 0 are constants which will be fixed later. We proceed almost
exactly as in the proof of Theorem 5.2 until (5.8), with the obvious changes. Now
Eu(t) � Eu(t0) − ∫ t

t0
Q(τ )‖ut (τ, ·)‖2

2 dτ by the Energy Conservation (B)s and
(F2), so that (5.8) is replaced by

G ′′(t) � (2 + q−)
{
‖ut (t, ·)‖2

2 + β
}

+ 2q−
∫ t

t0
Q(τ )‖ut (τ, ·)‖2

2 dτ,

where now β = 2{E1 − Eu(t0)} > 0 by (5.9). Condition (5.4) holds in [t0, t0 +T0],
where α = (2 + q−)/4 as in Theorems 5.2. But u cannot be global as in the proofs
of Theorems 5.1 and 5.2, by taking β0 > 0 so large that

ββ0 >
2

q− − 2
Q(t0)‖u(t0, ·)‖2

2 − 〈u(t0, ·), ut (t0, ·)〉,

while

T0 = 4

q− − 2
· G (t0)

G ′(t0)
,

since again G (t0) depends linearly on T0 and the equation is solvable in T0 thanks
to the choice of β0. Here clearly A = ‖u(t, ·)‖2

2 + ∫ t
t0

Q(τ )‖u(τ, ·)‖2
2 dτ + β(t −

t0 + β0)
2, then B = 1

2 G ′ and C = ‖ut (t, ·)‖2
2 + ∫ t

t0
Q(τ )‖ut (τ, ·)‖2

2 dτ + β. Hence
(5.5) holds now in [t0, t0 + T0], while (5.6) is valid in I . The fact that u cannot be
global shows that also this case cannot occur. 
�
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Of course Theorem 5.5 extends and generalizes the second part of Theorem 4
of [23] and Theorem 3.1 of [24] when the damping is linear in v.
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19. Mihǎilescu, M., Pucci, P., Rǎdulescu, V.: Eigenvalue problems for anisotropic quasi-
linear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698
(2008)

20. Pucci, P., Serrin, J.: Asymptotic stability for non–autonomous dissipative wave
systems. Commun. Pure Appl. Math. 49, 177–216 (1996)

http://dx.doi.org/10.1007/s00205-008-0122-8


516 Giuseppina Autuori, Patrizia Pucci & Maria Cesarina Salvatori

21. Pucci, P., Serrin, J.: Local asymptotic stability for dissipative wave systems. Israel
J. Math. 104, 29–50 (1998)

22. Pucci, P., Serrin, J.: Global nonexistence for abstract evolution equations with positive
initial energy. J. Differ. Equ. 150, 203–214 (1998)

23. Vitillaro, E.: Global nonexistence theorems for a class of evolution equations with
dissipation. Arch. Ration. Mech. Anal. 149, 155–182 (1999)

24. Vitillaro, E.: Some new results on global nonexistence and blow-up for evolution
problems with positive initial energy. Workshop on blow-up and global existence of
solutions for parabolic and hyperbolic problems (Trieste, 1999). Rend. Istit. Mat. Univ.
Trieste 31, 245–275 (2000)

25. Wu, S.T., Tsai, L.Y.: Blow-up for solutions for some nonlinear wave equations of Kir-
chhoff type with some dissipation. Nonlinear Anal. Theory Methods Appl. 65, 243–264
(2006)

26. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)
27. Zhikov, V.V.: On some variational problem. Russ. J. Math. Phys. 5, 105–116 (1997)

Dipartimento di Matematica “U. Dini”,
Università degli Studi di Firenze,

Viale G.B. Morgagni 67/A, 50134 Firenze, Italy.
e-mail: autuori@math.unifi.it

and

Dipartimento di Matematica e Informatica,
Università degli Studi di Perugia,

Via Vanvitelli 1, 06123 Perugia, Italy.
e-mail: pucci@dmi.unipg.it
e-mail: salva@dmi.unipg.it

(Received February 6, 2009 / Accepted May 13, 2009)
Published online June 9, 2009 – © Springer-Verlag (2009)


	Global Nonexistence for Nonlinear
Kirchhoff Systems
	Abstract
	1 Introduction
	2 Basic facts and notation
	3 The main theorem
	4 Applications of the main theorem
	Appendix: The linear dissipation case
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


