ERRATA OF THE BOOK

(1) At pag. 10, replace

$$
\mathcal{L}_{\alpha}^{p}=G_{\alpha}\left(L^{p}\left(\mathbb{R}^{N}\right)\right)=\left\{u: u=G_{\alpha} * f, f \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

by

$$
\mathcal{L}_{\alpha}^{p}=\mathcal{J}_{\alpha}\left(L^{p}\left(\mathbb{R}^{N}\right)\right)=\left\{u: u=\mathcal{J}_{\alpha} f, f \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

and replace

$$
\|u\|_{\mathcal{L}_{\alpha}^{p}}=\|f\|_{L^{p}\left(\mathbb{R}^{N}\right)} \text { if } u=G_{\alpha} * f
$$

by

$$
\|u\|_{\mathcal{L}_{\alpha}^{p}}=\|f\|_{L^{p}\left(\mathbb{R}^{N}\right)} \text { if } u=\mathcal{J}_{\alpha} f .
$$

(2) At pag. 110, formula (4.2.1), replace

$$
\frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}}
$$

by

$$
\frac{|u(x)-u(y)|^{2}}{|x-y|^{\frac{N+2 s}{2}}}
$$

(3) At pag. 132, to obtain the exponential estimate for v we need to replace " $|x| \geq 2 R^{\prime \prime}$ by " $|x| \geq R^{\prime}=$ $\max \left\{\frac{r R}{R-1}, 2 R\right\}^{\prime \prime}$. In this way we have

$$
|x-y| \geq|x|-|y| \geq|x|-r \geq \frac{|x|}{R} \geq 2 \quad \text { for all }|x| \geq R^{\prime}
$$

(the inequality given in the book works for $|x| \geq 2 R$ if we assume $r=1$)
(4) At pag. 216, second line from above, replace " $d_{\mu}=$ " by " $d_{\mu}+o_{n}(1)=$ ".
(5) At pag. 223, in the statement of Proposition 6.3.14, it is needed to add " $\mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ ".
(6) At pag. 231, in the proof of Theorem 6.3.22, replace the sentences "On the other hand, let us choose $h(\varepsilon)>0$ such that....we infer that Ψ_{ε} satisfies that Palais-Smale condition in $\tilde{\mathbb{S}}_{\varepsilon}$ " by "On the other hand, let us choose $h(\varepsilon)>0$ such that $h(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and $d_{V_{0}}+h(\varepsilon)$ is not a critical level for Ψ_{ε}. For $\varepsilon>0$ small enough, we can argue as in the proof of Proposition 6.3.14 to deduce that Ψ_{ε} satisfies the Palais-Smale condition in $\tilde{\mathbb{S}}_{\varepsilon} . "$
We note that one can prove the following result: "Let $\left(w_{n}\right) \subset \mathbb{S}_{\varepsilon}$ be such that $\Psi_{\varepsilon}\left(w_{n}\right) \rightarrow c$ and $\Psi_{\varepsilon}^{\prime}\left(w_{n}\right) \rightarrow$ 0 , where $c<d_{V_{\infty}}$ if $V_{\infty}<\infty$ and $c \in \mathbb{R}$ if $V_{\infty}=\infty$. Then $\left(w_{n}\right)$ has a subsequence that converges strongly in $\mathcal{H}_{\varepsilon}$." The proof goes as follows. Let $u_{n}=m_{\varepsilon}\left(w_{n}\right)$. It follows from Lemmas 6.3.2 and 6.3.3 that $\mathcal{J}_{\varepsilon}\left(u_{n}\right) \rightarrow c, \mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ and $\left\langle\mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$. From Proposition 6.3.14, we deduce that $u_{n} \rightarrow u$ in $\mathcal{H}_{\varepsilon}$ for some $u \in \mathcal{H}_{\varepsilon}$. Clearly, $u \in \mathcal{N}_{\varepsilon}$. Since $u_{n}=t_{n} w_{n}, u_{n} \rightarrow u \neq 0$ in $\mathcal{H}_{\varepsilon}$ and $\left\|w_{n}\right\|_{\varepsilon}=1$, we deduce that $\left(t_{n}\right)$ is bounded in $(0, \infty)$ and that $t_{n} \rightarrow t>0$. On the other hand, by using the boundedness of $\left(w_{n}\right)$, we can find w such that $w_{n} \rightharpoonup w$ in $\mathcal{H}_{\varepsilon}$. Therefore, combining $t_{n} \rightarrow t \neq 0$ and $u_{n} \rightarrow u$ in $\mathcal{H}_{\varepsilon}$, we get $w_{n} \rightarrow w$ in $\mathcal{H}_{\varepsilon}$ and $w=\frac{u}{t}$.
(7) At pag. 246, in the statement of Proposition 6.4 .14 , it is needed to add " $\mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ ". Moreover, at the beginning of the proof, one has to replace "Since $\mathcal{J}_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $\mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right)=0$ " by "Since $\mathcal{J}_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $\mathcal{J}_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0^{\prime \prime}$.
(8) at page 271 , replace "there exists a positive constant $C>0$ " by "there exists a positive constant $K_{1}>0$ ".
(9) at page 537, in formula (16.4.2), replace " $\frac{\partial h^{u}}{\partial s}(t, \tau) "$ by " $\frac{\partial h^{u}}{\partial \tau}(t, \tau)$ ".

