SPHERES AND HOMOLOGY SPHERES OBTAINED BY SURGERY

M. De Simone and A.I. Telloni

Abstract We study a class of reflexive links and the surgery manifolds arising from them. We determine geometric presentations for the fundamental group and a Rail-Road system for any surgery manifold. Finally we describe the surgery homology spheres as double branched coverings of \mathbb{S}^3 and draw explicitly the branch sets, which are prime three-bridge knots.

2000 Mathematics Subject Classification: 57M25; 57M12

Keywords: reflexive links, Dehn surgery, homology sphere, lens space, branched covering, fundamental group.

1 Introduction

Dehn surgery theory and branched coverings over knots and links are different techniques of representation of 3-manifolds. It is known that all 3-manifolds can be constructed by surgery; on the other hand, any closed 3-manifold can be represented as a branched covering of a suitable link in \mathbb{S}^3 . Many researchers are interested in the connections between these two methods to represent closed 3-manifolds (see, for example [KK], [A]). A celebrated result due to Gordon and Luecke ([GL]) says that non-trivial Dehn surgery on a non-trivial knot never yield the 3-sphere, while there exist links admitting non-trivial surgeries yielding \mathbb{S}^3 . For example, any 1/nsurgery on an unknotted component of a link in \mathbb{S}^3 gives the 3-sphere again. These links are called *reflexive* and they are studied by many researchers (see [O], [B], [MOS]). In [Te] M. Teragaito constructed a family of infinitely many unsplittable links of *n*-components in the 3-sphere with a non-trivial surgery yielding \mathbb{S}^3 . In this paper we introduce a class of reflexive links L_n , $n \geq 1$ 2, with an arbitrary number of unknotted components and investigate the manifolds arising by performing Dehn surgery on them. One of our results is that any link L_n admits infinitely many surgeries yielding the 3-sphere and two infinite classes of lens space surgeries. We determine geometric presentations for the fundamental group of the surgery manifolds arising from L_n and focus on the homology spheres. We recognize them as double branched coverings of the 3-sphere over some classes of different prime knots, for which we give explicit planar projections and 2-generator presentations for the knot groups. As a corollary of our study, we extend the Theorem 2.1 of [Te].

2 The links L_n

Let $L_n = K_1 \cup \cdots \cup K_{n+2}$ the link depicted in Figure 1. We denote $M = L(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ the manifold obtained by surgery on L_n with surgery coefficient $\frac{p_i}{q_i}$ on the component K_i , for $i = 1, \ldots, n+2$. This means that M is obtained by gluing n+2 solid tori to the exterior of the link L_n along their boundaries according to the surgery instructions (for more details see, for example, [R]). Since each surgery manifold is uniquely determined by the slopes $\gamma_i = \frac{p_i}{q_i}$, we assume that the integers p_i and q_i are coprime, and $p_i \ge 0$, for $i = 1, \ldots, n+2$. By using the Wirtinger algorithm on the planar projection in Figure 1, we obtain our first theorem. Recall that, given two generators of a group presentation, the symbol [x, y] denotes the commutator word $xyx^{-1}y^{-1}$.

Figure 1. The link L_n

Theorem 1. The group of L_n , that is, the fundamental group of $\mathbb{S}^3 \setminus L_n$ admits the following presentation

$$\pi(L_n) = \langle a, b, c, s_2, \dots, s_n : [a, s_j] = 1, \ (j = 2, \dots, n)$$
$$bc^{-1}b^{-1}abcb^{-1}c^{-1}a^{-1}c = 1, bcb^{-1}aba^{-1}c^{-1}ab^{-1}a^{-1} = 1 \rangle$$

3 The surgery manifolds

For i = 1, ..., n + 2 denote with $(\mathbf{m_i}, \mathbf{l_i})$ a meridian-longitude pair of the component K_i of L_n , so that $\mathbf{l_i}$ is homologous to zero in the complement of K_i (i.e. $(\mathbf{m_i}, \mathbf{l_i})$ is a so called *preferred frame*). Then we have:

$$\mathbf{m_1} = a \qquad \mathbf{l_1} = bcb^{-1}c^{-1}s_n^{-1}\dots s_2^{-1} \\ \mathbf{m_i} = s_i \qquad \mathbf{l_i} = a^{-1} \qquad (i = 2, \dots n) \qquad (*) \\ \mathbf{m_{n+1}} = b \qquad \mathbf{l_{n+1}} = c^{-1}a^{-1}ca \\ \mathbf{m_{n+2}} = c \qquad \mathbf{l_{n+2}} = c^{-1}b^{-1}aba^{-1}c$$

where $[\mathbf{m}_{i}, \mathbf{l}_{i}] = 1$, for i = 1, ..., n + 2.

A presentation for the fundamental group of the surgery manifold M can be obtained from $\pi(L_n)$ by adding the surgery relations $\mathbf{m_i}^{p_i} \mathbf{l_i}^{q_i} = 1$, for $i = 1, \dots n + 2$. So, we give the following

Theorem 2. The fundamental group of $M = L(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ is presented by

$$\begin{aligned} \pi_1(M) &= \langle a, b, c, s_2, \dots, s_n \ : [a, s_j] = 1, \ (j = 2, \dots, n) \\ & bc^{-1}b^{-1}abcb^{-1}c^{-1}a^{-1}c = 1 \\ & bcb^{-1}aba^{-1}c^{-1}ab^{-1}a^{-1} = 1 \\ & a^{p_1}bcb^{-1}c^{-1}(s_n^{-1}\dots s_2^{-1})^{q_1} = 1 \\ & s_i^{p_i}a^{-q_i} = 1, \qquad (i = 2, \dots, n) \\ & b^{p_{n+1}}(c^{-1}a^{-1}ca)^{q_{n+1}} = 1, \ c^{p_{n+2}}(b^{-1}aba^{-1})^{q_{n+2}} = 1 \rangle \end{aligned}$$

Recall that a spine of a closed manifold M is a 2-polyhedron K such that M minus a 3-cell retracts to K.

Theorem 3. The fundamental group of $M = L(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ is presented

$$\pi_1(M) = \langle A_1, \dots, A_n, B, C : A_i^{p_i} = A_1^{q_1}, \ i = 2, \dots, n$$
$$A_1^{-p_1} = B^{q_{n+1}} C^{q_{n+2}} B^{-q_{n+1}} C^{-q_{n+2}} A_n^{-q_n} \dots A_2^{-q_2},$$
$$B^{-p_{n+1}} = C^{-q_{n+2}} A_1^{-q_1} C^{q_{n+2}} A_1^{q_1}$$
$$C^{-p_{n+2}} = B^{-q_{n+1}} A_1^{q_1} B^{q_{n+1}} A_1^{-q_1} \rangle$$

Moreover, this presentation is geometric, that is it corresponds to a spine of the manifold M.

Proof. Following a technique explained in [CST], we modify the group presentation in Theorem 2. Since $(p_i, q_i) = 1$, there exist integers α_i , β_i such that $\alpha_i q_i - \beta_i p_i = 1$, for every $i = 1, \ldots, n+2$. Define new words

$$A_{i} = \mathbf{m}_{i}^{\alpha_{i}} \mathbf{l}_{i}^{\beta_{i}}, \qquad i = 1, \dots, n$$
$$B = \mathbf{m}_{n+1}^{\alpha_{n+1}} \mathbf{l}_{n+1}^{\beta_{n+1}}$$
$$C = \mathbf{m}_{n+2}^{\alpha_{n+2}} \mathbf{l}_{n+2}^{\beta_{n+2}} \qquad ,$$

which gives

by

$$A_{i}^{q_{i}} = (\mathbf{m}_{i}^{\alpha_{i}} \mathbf{l}_{i}^{\beta_{i}})^{q_{i}} = \mathbf{m}_{i}^{\alpha_{i}q_{i}} \mathbf{l}_{i}^{\beta_{i}q_{i}} = \mathbf{m}_{i}^{1+\beta_{i}p_{i}} \mathbf{l}_{i}^{\beta_{i}q_{i}} = \mathbf{m}_{i} (\mathbf{m}_{i}^{p_{i}} \mathbf{l}_{i}^{q_{i}})^{\beta_{i}} = \mathbf{m}_{i}$$
$$A_{i}^{-p_{i}} = (\mathbf{m}_{i}^{\alpha_{i}} \mathbf{l}_{i}^{\beta_{i}})^{-p_{i}} = \mathbf{m}_{i}^{-\alpha_{i}p_{i}} \mathbf{l}_{i}^{-\beta_{i}p_{i}} = \mathbf{m}_{i}^{-\alpha_{i}p_{i}} \mathbf{l}_{i}^{1-\alpha_{i}p_{i}} = \mathbf{l}_{i} (\mathbf{m}_{i}^{p_{i}} \mathbf{l}_{i}^{q_{i}})^{-\alpha_{i}} = \mathbf{l}_{i}$$
for $i = 1$, n and analogously

for $i = 1, \ldots, n$ and analogously

$$B^{q_{n+1}} = \mathbf{m_{n+1}}, \quad B^{-p_{n+1}} = \mathbf{l_{n+1}}, \quad C^{q_{n+2}} = \mathbf{m_{n+2}}, \quad C^{-p_{n+2}} = \mathbf{l_{n+2}}.$$

Hence

$$a = A_1^{q_1}, \quad s_i = A_i^{q_i} \ (i = 2, \dots, n), \quad b = B^{q_{n+1}}, \quad c = C^{q_{n+2}}.$$

Substituting these new generators in the relations (*) gives the presentation of the statement. Furthermore, this presentation is geometric, since it is induced by the Rail-Road-system depicted in Figure 2. Here the hexagons correspond to the n+2 generators and the closed curves between the hexagons give rise of the relations (for more details on Rail-Road-System see [OS]). \Box

As a corollary of Theorem 3, we obtain immediately the following results about Teragaito's links L'_n depicted in Figure 3. In fact, the link L_n is obtained from L'_n by adding two simple curves K_{n+1} and K_{n+2} encircling the twist regions and performing suitable twists around them. Hence, any Dehn surgery on L'_n can be described as a Dehn surgery on L_n .

4

Corollary 4 (Teragaito [Te]) The surgery manifold $L'(n-2,0,1,\ldots,1)$ obtained from the link L'_n by Dehn surgery with coefficients n-2 on the component K'_1 , 0 on the component K'_2 and 1 on the other components of L'_n is the 3-sphere.

Proof. The link L_n is obtained from L'_n by adding the unknotted components K_{n+1} and K_{n+2} and performing a -1-twist around K_{n+1} and a +1-twist around K_{n+2} . Adding an unknotted component with coefficient ∞ and twisting around a component does not change the surgery manifold, provided that the surgery coefficients are modified according to the Kirby calculus. Then, by the equivalence theorem about surgery descriptions of manifolds, $L'(n-2,0,1\ldots,1)$ is equivalent to $L(\gamma_1,\ldots,\gamma_{n+2})$, where the coefficients of the first n components remain unchanged, $\gamma_{n+1} = -1$, $\gamma_{n+2} = 1$. By Theorem 3, $L_n(n-2,0\ldots,1,-1,1)$ has trivial fundamental group, hence it is homeomorphic to \mathbb{S}^3 . \Box

Figure 2. A Rail-Road-system for $M = L(\frac{p_1}{q_1}, \dots, \frac{p_{n+2}}{q_{n+2}})$

Corollary 5 The surgery manifold $M' = L'(\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n})$ with $q_1 = 1, p_i = 0$

for a fixed index i, $|\frac{p_j}{q_j}| = 1$ for $j \neq i$ and $i, j \in \{2, \ldots, n\}$ is homeomorphic to \mathbb{S}^3 .

Proof. As in the previous proof, M' is homeomorphic to $M = L(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ with the fixed values of the first n parameters, $\frac{p_{n+1}}{q_{n+1}} = 1$, $\frac{p_{n+2}}{q_{n+2}} = -1$. By Theorem 3 and the conditions on the surgery coefficients, it is possible to obtain a reduced presentation for $\pi_1(M)$ in which all generators disappear. So $\pi_1(M)$ turns out to be the trivial group, hence $M' \cong M \cong \mathbb{S}^3$. \Box

Figure 3. The Teragaito's link L'_n , for $n \ge 2$

4 Surgery homology spheres and lens spaces

Theorem 6. First homology group of the manifold $M = M(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ is presented by

$$\mathbb{H}_{1}(M) = \langle A_{1}, \dots, A_{n}, B, C : [A_{i}, A_{j}] = [B, A_{i}] = [C, A_{i}] = 1, \ (i, j = 1, \dots, n)$$
$$[B, C] = 1, \ A_{1}^{q_{1}} = A_{i}^{p_{i}}, \ (i = 2, \dots, n)$$
$$A_{1}^{p_{1}} = A_{2}^{q_{2}} \dots A_{n}^{q_{n}}, \ B^{p_{n+1}} = 1, \ C^{p_{n+2}} = 1 \rangle,$$

that is, $\mathbb{H}_1(M) \equiv \mathbb{Z}_{p_{n+1}} \oplus \mathbb{Z}_{p_{n+2}} \oplus G$, where G is the group presented by the generators A_i and the relations of $\mathbb{H}_1(M)$ involving only generators A_i . *Proof.* Since $\mathbb{H}_1(M)$ is the abelianization of $\pi_1(M)$, we add the commutators $[x, y] = xyx^{-1}y^{-1}$ between the generators to the presentation of Theorem 3. The statement follows from standard reductions of the obtained group presentation. \Box

Corollary 7. The manifold $M = L(\frac{p_1}{q_1}, \dots, \frac{p_{n+2}}{q_{n+2}})$ is a homology sphere if and only if

$$p_{n+1}p_{n+2}(\prod_{i=1}^{n} p_i - q_1 \sum_{j=2}^{n} P(j)q_j) = \pm 1,$$

where P(j) denotes the product of all coefficients $p_i, i \in \{2, ..., n\} \setminus \{j\}$. *Proof.* The matrix representing the relators of $\mathbb{H}_1(M)$ is

	$\left(\begin{array}{c} q_1 \end{array} \right)$	$-p_{2}$	0	0	0	0	0)
	q_1	0	$-p_{3}$	÷	0	0	0
$\mathcal{H} =$	q_1	0	0		$-p_n$	0	0
	0	0		0	0	p_{n+1}	0
	0	0		0	0	0	p_{n+2}
	$\langle p_1 \rangle$	$-q_2$	$-q_3$	•••	$-q_n$	0	0 /

It is known that M is a homology sphere if and only if $det\mathcal{H} = \pm 1$, and the statement follows by applying successively Laplace theorem to the (n+2)-th, (n+1)-th and n-th columns. \Box

Corollary 8. Let $p_i, q_i \in \mathbb{Z}$, $(p_i, q_i) = 1$, $p_i \ge 0$, for $i = 1, \ldots, n+2$ and the following conditions

- (a) $p_{n+1} = 1$ or $p_{n+2} = 1$
- **(b.1)** $p_i = |p_1 q_1(\sum_{j=2}^n q_j)| = 1$, for i = 2, ..., n
- **(b.2)** $|q_1| = 1$, $p_i = 0$, $|q_i| = 1$ for a fixed index $i \in \{2, ..., n\}$, $p_j = 1$, for j = 2, ..., n and $j \neq i$
 - (c) $p_i = 1, i = 2, \ldots, n+2.$

If either one of **b.1** and **b.2** holds together with **a**, or **c** holds, then the manifold $M = L(\frac{p_1}{q_1}, \ldots, \frac{p_{n+2}}{q_{n+2}})$ is a homology lens space. In particular, if either **b.2** and **a** hold or $q_{n+1}q_{n+2} = 0$ and **c** hold, then M is just a lens space.

Proof. By Theorem 6, the surgery manifold M is a homology lens space if and only if exactly two of the sets $\mathbb{Z}_{p_{n+1}}$, $\mathbb{Z}_{p_{n+2}}$ and G are trivial and the remaining one has finite order. Now, condition (a) assures at least one of

 $\mathbb{Z}_{p_{n+1}}, \mathbb{Z}_{p_{n+2}}$ is trivial; each one of the conditions (**b.1**) and (**b.2**) gets $G \cong 0$ and condition (**c**) gives $\mathbb{H}_1(M) \cong \mathbb{Z}_{p_1-q_1(q_2+\cdots+q_n)}$. This completes the proof for the homology lens spaces. To prove the second part, first suppose **b.2** holds and $p_{n+1} = 1$ (the proof is analogous if $p_{n+2} = 1$). The hypotheses allow us to eliminate the generators A_j , for $j \neq i, j \in \{1, \ldots, n\}$, and Bby using relations $A_j = 1$ and $B = C^{q_{n+2}}C^{-q_{n+2}}$. So we get $\pi_1(M) \equiv$ $\langle C : C^{p_{n+2}} = 1 \rangle \cong \mathbb{Z}_{p_{n+2}}$. If (**c**) holds and $q_{n+1} = 0$, we can reduce the presentation of Theorem 3 to the equivalent one $\langle A_1^{-p_1+q_1(q_2+\cdots+q_n)} = C^{q_{n+2}}C^{-q_{n+2}}, B = C = 1 \rangle \cong \mathbb{Z}_t$, where $t = -p_1 + q_1(q_2 + \cdots + q_n)$. \Box

5 Covering properties

Let us denote with H(q, l, m, r) the homology sphere $L_n(\frac{p}{q}, \frac{1}{q_2}, \ldots, \frac{1}{q_n}, \frac{1}{l}, \frac{1}{m})$, where $r = p - q \sum_{i=2}^{n} q_i$. By Theorem 4, we have eight classes of surgery homology spheres, depending on the values of $l, m, n, r \in \{-1, 1\}$, for which we determine geometric presentations for the fundamental group and covering properties.

Theorem 9. The surgery manifold H(q, l, m, r) has Heegaard genus equal to 2 and it is homeomorphic to the 2-fold cyclic covering of \mathbb{S}^3 branched over the three-bridge knot K(q, l, m, n).

Proof. Let us prove the statement for the manifold H(q, 1, 1, 1); the proofs for the other homology spheres are analogous. By Theorem 3, we get a presentation for the fundamental group $\pi(q, 1, 1, 1, 1)$ of H(q, 1, 1, 1). The special values of the surgery coefficients allow to eliminate the generators Cand A_i from the relations $C = A_1^q B^{-1} A_1^{-q} B$ and $A_i = A_1^q$, i = 2, ..., n. So we get the following presentation for $\pi(q, 1, 1, 1)$

$$\langle A_1, B : A_1^{-p+q\sum_{i=2}^n q_i} = BA_1^q B^{-1} A_1^{-q} BB^{-1} (A_1^q B^{-1} A_1^{-q} B)^{-1} B^{-1} = (A_1^q B^{-1} A_1^{-q} B)^{-1} A_1^{-q} A_1^q B^{-1} A_1^{-q} BA_1^q \rangle,$$

which is equivalent to

$$\langle A,B: BA^{1-q}BA^{q}B^{-1}A^{-q}B^{-1}A^{q} = 1, \ A^{2q}BA^{-q}B^{-1}A^{-q}B = 1 \rangle.$$

This presentation is geometric, that is it corresponds to a spine of the manifold H(q, 1, 1, 1), as stated in Theorem 3, and it is induced by the Heegard diagram $\mathcal{G}(q, 1, 1, 1)$ in Figure 4. In fact, the holes of the diagram correspond to the generators, and the closed curves between the holes correspond to the relators of $\pi(q, 1, 1, 1)$. Hence, the Heegaard genus of H(q, 1, 1, 1) is 2. Moreover, the diagram $\mathcal{G}(1, 1, 1, 1)$ is 2-symmetric, that is it admits two different symmetries of order two. Following a costruction explained in [BH] and [T], we can state that H(q, 1, 1, 1) is homeomorphic to the 2-fold covering of the sphere branched over a well-specified three-bridge link (in the general case) directly obtainable from the diagram $\mathcal{G}(q, 1, 1, 1)$. The symmetry axes fixed by one of the involutions of $\mathcal{G}(q, 1, 1, 1)$ become the bridges of the branch set. Note that even if for q = 1 we have a slightly different Heegaard diagram with respect to $\mathcal{G}(q, 1, 1, 1)$, q > 1, in Figure 4, the branch set of Figure 5 holds for all the non-negative values of q. In Figures 6-11 are depicted Heegaard diagrams and branch sets for the others homology spheres. \Box

Figure 4. A Heegaard diagram of H(q, 1, 1, 1), for $q \ge 2$

Figure 5. The branch set K(q, 1, 1, 1)

Figure 6. A Heegaard diagram of H(q,1,-1,1), for $q\geq 2$

Figure 7. The branch set K(q, 1, -1, 1)

Remark. The fundamental groups of the homology spheres H(q, l, m, r) turn out to be pairwise isomorphic, since they admit equivalent presentations. In particular, $\pi(q, 1, 1, 1) \cong \pi(q, -1, -1, -1), \pi(q, 1, -1, 1) \cong \pi(q, -1, 1, -1), \pi(q, -1, -1, 1) \cong \pi(q, -1, 1, -1)$ and $\pi(q, -1, 1, 1, 1) \cong \pi(q, 1, -1, 1, -1)$.

Figure 8. A Heegaard diagram of H(q,-1,-1,1), for $q\geq 2$

Figure 9. The branch set K(q, -1, -1, 1)

Figure 10. A Heegaard diagram of H(q, -1, 1, 1), for $q \ge 2$

Figure 11. The branch set K(q, -1, 1, 1)

By applying Wirtinger algorithm to our branch sets, we obtain presentations for the knot groups $\pi(q, l, m, r) \cong \pi_1(\mathbb{S}^3 \setminus K(q, l, m, r))$ with two generators. Hence these knots are prime by Norwood ([N]). Recall that for a real number x, the symbol $\lfloor x \rfloor$ indicates the integer part of x, that is, the largest integer not greater than x.

Theorem 10. The knots K(q, l, m, n) are prime, and the knot group $\pi(q, l, m, r)$ admits the following presentation

$$\pi(q,l,m,n) = \langle a,b \colon b^{\tau}[a^2,b^2]^{\lfloor \frac{q}{2} \rfloor} w[b^{-2}a^{-2}]^{\lfloor \frac{q}{2} \rfloor} \rangle$$

where

$$\tau = \begin{cases} -5 & l = m = 1 \\ -7 & l = 1, \ m = -1 \\ 3 & l = -1, \ m = 1, \ q > 1 \\ 1 & otherwise \end{cases}$$

and

$$w = \begin{cases} a^3 & l = 1, \ q \ odd \\ b^2 a b^2 & l = 1, \ q \ even \\ a^2 b^2 a^{-1} b^2 a^2 & l = -1, \ q \ odd \\ a & l = -1, \ q \ even \end{cases}$$

Remark Note that the knot K(1,1,1,1) is equivalent to the torus knot T(3,5) and the knot K(1,-1,1,1) is equivalent to the torus knot T(3,7); moreover, the knots K(1,-1,1,1) and K(1,-1,-1,1) are equivalent to the (-2,3,7)-pretzel knot. This means that the manifold H(1,1,1,1) (resp. H(1,-1,1,1)) is homeomorphic to the Brieskorn manifold M(3,5,2) (resp. M(3,7,2)) in the classic notation of [M].

References

- [A] D. Auckly, Two Fold Branched Covers, preprint.
- [B] J. Berge, Embedding the exteriors of one-tunnel knots and links in the 3-sphere, preprint.
- [BH] J.S. Birman, H.M. Hilden, Heegaard splittings of branched coverings of S³, Trans. Amer. Math. Soc., 213 (1975), 315-352.
- [CST] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Fundamental group and Covering Properties of Hyperbolic Surgery Manifolds, Geometry, Volume 2013 (2013), ID 484508, http://dx.doi.org/10.1155/2013/484508.
 - [GL] C. McA. Gordon, J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
- [KK] S.H. Kim., Y. Kim, On hyperbolic 3-manifolds obtained by Dehn surgery on links, Intern. J. of Mathematics and Math. Sciences, Volume 2010, ID 573403, doi:10.1155/2010/573403.
- [MOS] H. Matsuda, M. Ozawa, K. Shimokawa, On non-simple reflexive links, J. Knot Theory and iits Ram. 11 (2002), 787-791.

- [M] J. Milnor, On the 3dimensional Brieskorn manifolds M(p, q, r), Ann. Math. Studies 84 (1975), 175-225.
- [N] F. H. Norwood, Every two-generator knot is prime, Proceed. of the Amer. Math. Soc. 86 (1982) (1), 143-147.
- [O] M. Ochiai, *Heegaard diagrams of 3-manifolds*, Trans. Amer. Math. Soc., **328** (1991), 863-879.
- [OS] R.P. Osborne, R. Stevens, Group presentations corresponding to spines of 3-manifolds. II, Trans. Amer. Math. Soc., 234 (1) (1977), 213-243
 - [R] D. Rolfsen, Knots and Links, Math. Lect. Ser., 7, Publish or Perish, Berkeley, 1976.
- [T] M. Takahashi, Two knots with the same 2fold branched covering space, Yokohama Math. J., 25 (1) (1977), 9199.
- [Te], M. Teragaito, Lens with surgery yielding the 3-sphere, J. Knot Theory Ramifications, 11, 105 (2002).

Marina De Simone Dipartimento di Matematica "Giuseppe Peano" Via Carlo Alberto 10 Torino, Italy

Agnese Ilaria Telloni Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche Via Brecce Bianche Ancona, Italy