SPHERES AND HOMOLOGY SPHERES OBTAINED BY SURGERY

M. De Simone and A.I. Telloni

Abstract

We study a class of reflexive links and the surgery manifolds arising from them. We determine geometric presentations for the fundamental group and a Rail-Road system for any surgery manifold. Finally we describe the surgery homology spheres as double branched coverings of \mathbb{S}^{3} and draw explicitely the branch sets, which are prime threebridge knots.

2000 Mathematics Subject Classification: 57M25; 57M12
Keywords: reflexive links, Dehn surgery, homology sphere, lens space, branched covering, fundamental group.

1 Introduction

Dehn surgery theory and branched coverings over knots and links are different techniques of representation of 3 -manifolds. It is known that all 3 -manifolds can be constructed by surgery; on the other hand, any closed 3 -manifold can be represented as a branched covering of a suitable link in \mathbb{S}^{3}. Many researchers are interested in the connections between these two methods to represent closed 3 -manifolds (see, for example [KK], [A]). A celebrated result due to Gordon and Luecke ([GL]) says that non-trivial Dehn surgery on a non-trivial knot never yield the 3 -sphere, while there exist links admitting non-trivial surgeries yielding \mathbb{S}^{3}. For example, any $1 / n$ surgery on an unknotted component of a link in \mathbb{S}^{3} gives the 3 -sphere again. These links are called reflexive and they are studied by many researchers (see $[\mathrm{O}],[\mathrm{B}],[\mathrm{MOS}])$. In $[\mathrm{Te}] \mathrm{M}$. Teragaito constructed a family of infinitely many unsplittable links of n-components in the 3 -sphere with a non-trivial surgery yielding \mathbb{S}^{3}. In this paper we introduce a class of reflexive links $L_{n}, n \geq$ 2 , with an arbitrary number of unknotted components and investigate the manifolds arising by performing Dehn surgery on them. One of our results is that any link L_{n} admits infinitely many surgeries yielding the 3 -sphere
and two infinite classes of lens space surgeries. We determine geometric presentations for the fundamental group of the surgery manifolds arising from L_{n} and focus on the homology spheres. We recognize them as double branched coverings of the 3 -sphere over some classes of different prime knots, for which we give explicit planar projections and 2-generator presentations for the knot groups. As a corollary of our study, we extend the Theorem 2.1 of $[\mathrm{Te}]$.

2 The links L_{n}

Let $L_{n}=K_{1} \cup \cdots \cup K_{n+2}$ the link depicted in Figure 1. We denote $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ the manifold obtained by surgery on L_{n} with surgery coefficient $\frac{p_{i}}{q_{i}}$ on the component K_{i}, for $i=1, \ldots, n+2$. This means that M is obtained by gluing $n+2$ solid tori to the exterior of the link L_{n} along their boundaries according to the surgery instructions (for more details see, for example, $[\mathrm{R}]$). Since each surgery manifold is uniquely determined by the slopes $\gamma_{i}=\frac{p_{i}}{q_{i}}$, we assume that the integers p_{i} and q_{i} are coprime, and $p_{i} \geq 0$, for $i=1, \ldots, n+2$. By using the Wirtinger algorithm on the planar projection in Figure 1, we obtain our first theorem. Recall that, given two generators of a group presentation, the symbol $[x, y]$ denotes the commutator word $x y x^{-1} y^{-1}$.

Figure 1. The link L_{n}

Theorem 1. The group of L_{n}, that is, the fundamental group of $\mathbb{S}^{3} \backslash L_{n}$ admits the following presentation

$$
\begin{aligned}
\pi\left(L_{n}\right)=\left\langle a, b, c, s_{2}, \ldots, s_{n}:\right. & :\left[a, s_{j}\right]=1,(j=2, \ldots, n) \\
& \left.b c^{-1} b^{-1} a b c b^{-1} c^{-1} a^{-1} c=1, b c b^{-1} a b a^{-1} c^{-1} a b^{-1} a^{-1}=1\right\rangle
\end{aligned}
$$

3 The surgery manifolds

For $i=1, \ldots, n+2$ denote with $\left(\mathbf{m}_{\mathbf{i}}, \mathbf{l}_{\mathbf{i}}\right)$ a meridian-longitude pair of the component K_{i} of L_{n}, so that $\mathbf{l}_{\mathbf{i}}$ is homologous to zero in the complement of K_{i} (i.e. $\left(\mathbf{m}_{\mathbf{i}}, \mathbf{l}_{\mathbf{i}}\right)$ is a so called preferred frame). Then we have:

$$
\begin{array}{lll}
\mathbf{m}_{\mathbf{1}}=a & \mathbf{l}_{\mathbf{1}}=b c b^{-1} c^{-1} s_{n}^{-1} \ldots s_{2}^{-1} & \\
\mathbf{m}_{\mathbf{i}}=s_{i} & \mathbf{l}_{\mathbf{i}}=a^{-1} \\
\mathbf{m}_{\mathbf{n}+\mathbf{1}}=b & \mathbf{1}_{\mathbf{n}+\mathbf{1}}=c^{-1} a^{-1} c a \\
\mathbf{m}_{\mathbf{n}+\mathbf{2}}=c & \mathbf{1}_{\mathbf{n + 2}}=c^{-1} b^{-1} a b a^{-1} c & (i=2, \ldots n) \\
\hline
\end{array}
$$

where $\left[\mathbf{m}_{\mathbf{i}}, \mathbf{l}_{\mathbf{i}}\right]=1$, for $i=1, \ldots, n+2$.
A presentation for the fundamental group of the surgery manifold M can be obtained from $\pi\left(L_{n}\right)$ by adding the surgery relations $\mathbf{m}_{\mathbf{i}}{ }^{p_{i} \mathbf{l}_{\mathbf{i}}}{ }^{q_{i}}=1$, for $i=1, \ldots n+2$. So, we give the following

Theorem 2. The fundamental group of $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ is presented by

$$
\begin{aligned}
\pi_{1}(M)=\left\langle a, b, c, s_{2}, \ldots, s_{n}\right. & :\left[a, s_{j}\right]=1,(j=2, \ldots, n) \\
& b c^{-1} b^{-1} a b c b^{-1} c^{-1} a^{-1} c=1 \\
& b c b^{-1} a b a^{-1} c^{-1} a b^{-1} a^{-1}=1 \\
& a^{p_{1}} b c b^{-1} c^{-1}\left(s_{n}^{-1} \ldots s_{2}^{-1}\right)^{q_{1}}=1 \\
& s_{i}^{p_{i}} a^{-q_{i}}=1, \quad(i=2, \ldots, n) \\
& \left.b^{p_{n+1}}\left(c^{-1} a^{-1} c a\right)^{q_{n+1}}=1, c^{p_{n+2}}\left(b^{-1} a b a^{-1}\right)^{q_{n+2}}=1\right\rangle
\end{aligned}
$$

Recall that a spine of a closed manifold M is a 2-polyhedron K such that M minus a 3 -cell retracts to K.

Theorem 3. The fundamental group of $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ is presented
by

$$
\begin{aligned}
\pi_{1}(M)=\left\langle A_{1}, \ldots, A_{n}, B, C:\right. & A_{i}^{p_{i}}=A_{1}^{q_{1}}, i=2, \ldots, n \\
& A_{1}^{-p_{1}}=B^{q_{n+1}} C^{q_{n+2}} B^{-q_{n+1}} C^{-q_{n+2}} A_{n}^{-q_{n}} \ldots A_{2}^{-q_{2}}, \\
& B^{-p_{n+1}}=C^{-q_{n+2}} A_{1}^{-q_{1}} C^{q_{n+2}} A_{1}^{q_{1}} \\
& \left.C^{-p_{n+2}}=B^{-q_{n+1}} A_{1}^{q_{1}} B^{q_{n+1}} A_{1}^{-q_{1}}\right\rangle
\end{aligned}
$$

Moreover, this presentation is geometric, that is it corresponds to a spine of the manifold M.

Proof. Following a technique explained in [CST], we modify the group presentation in Theorem 2. Since $\left(p_{i}, q_{i}\right)=1$, there exist integers α_{i}, β_{i} such that $\alpha_{i} q_{i}-\beta_{i} p_{i}=1$, for every $i=1, \ldots, n+2$. Define new words

$$
\begin{aligned}
A_{i} & =\mathbf{m}_{\mathbf{i}}{ }^{\alpha_{i}} \mathbf{l}_{\mathbf{i}}^{\beta_{i}}, \\
B & =\mathbf{m}_{\mathbf{n + 1}}{ }^{\alpha_{n+1}} \mathbf{l}_{\mathbf{n}+\mathbf{1}} \beta_{n+1} \\
C & =\mathbf{m}_{\mathbf{n + 2}}{ }^{\alpha_{n+2}} \mathbf{l}_{\mathbf{n}+\mathbf{2}}{ }^{\beta_{n+2}}
\end{aligned}
$$

which gives

$$
\begin{aligned}
A_{i}^{q_{i}} & =\left(\mathbf{m}_{\mathbf{i}}{ }^{\alpha_{i}} \mathbf{l}_{\mathbf{i}}{ }^{\beta_{i}}\right)^{q_{i}}=\mathbf{m}_{\mathbf{i}}{ }^{\alpha_{i} q_{i}} \mathbf{l}_{\mathbf{i}}{ }^{\beta_{i} q_{i}}=\mathbf{m}_{\mathbf{i}}{ }^{1+\beta_{i} p_{i}} \mathbf{l}_{\mathbf{i}} \beta_{i} q_{i}=\mathbf{m}_{\mathbf{i}}\left(\mathbf{m}_{\mathbf{i}}{ }^{p_{i}} \mathbf{l}_{\mathbf{i}}{ }^{q_{i}}\right)^{\beta_{i}}=\mathbf{m}_{\mathbf{i}} \\
A_{i}^{-p_{i}} & =\left(\mathbf{m}_{\mathbf{i}}{ }^{\alpha_{i}} \mathbf{l}_{\mathbf{i}}{ }^{\beta_{i}}\right)^{-p_{i}}=\mathbf{m}_{\mathbf{i}}^{-\alpha_{i} p_{i}} \mathbf{l}_{\mathbf{i}}{ }^{-\beta_{i} p_{i}}=\mathbf{m}_{\mathbf{i}}{ }^{-\alpha_{i} p_{i}} \mathbf{l}_{\mathbf{i}}^{1-\alpha_{i} p_{i}}=\mathbf{l}_{\mathbf{i}}\left(\mathbf{m}_{\mathbf{i}}{ }^{p_{i}} \mathbf{l}_{\mathbf{i}}{ }^{q_{i}}\right)^{-\alpha_{i}}=\mathbf{l}_{\mathbf{i}}
\end{aligned}
$$

for $i=1, \ldots, n$ and analogously

$$
B^{q_{n+1}}=\mathbf{m}_{\mathbf{n}+\mathbf{1}}, \quad B^{-p_{n+1}}=\mathbf{l}_{\mathbf{n}+\mathbf{1}}, \quad C^{q_{n+2}}=\mathbf{m}_{\mathbf{n}+\mathbf{2}}, \quad C^{-p_{n+2}}=\mathbf{l}_{\mathbf{n}+\mathbf{2}}
$$

Hence

$$
a=A_{1}^{q_{1}}, \quad s_{i}=A_{i}^{q_{i}}(i=2, \ldots, n), \quad b=B^{q_{n+1}}, \quad c=C^{q_{n+2}}
$$

Substituting these new generators in the relations $\left(^{*}\right)$ gives the presentation of the statement. Furthermore, this presentation is geometric, since it is induced by the Rail-Road-system depicted in Figure 2. Here the hexagons correspond to the $n+2$ generators and the closed curves between the hexagons give rise of the relations (for more details on Rail-Road-System see [OS]).

As a corollary of Theorem 3, we obtain immediately the following results about Teragaito's links L_{n}^{\prime} depicted in Figure 3 . In fact, the link L_{n} is obtained from L_{n}^{\prime} by adding two simple curves K_{n+1} and K_{n+2} encircling the twist regions and performing suitable twists around them. Hence, any Dehn surgery on L_{n}^{\prime} can be described as a Dehn surgery on L_{n}.

Corollary 4 (Teragaito [Te]) The surgery manifold $L^{\prime}(n-2,0,1, \ldots, 1)$ obtained from the link L_{n}^{\prime} by Dehn surgery with coefficients $n-2$ on the component $K_{1}^{\prime}, 0$ on the component K_{2}^{\prime} and 1 on the other components of L_{n}^{\prime} is the 3 -sphere.

Proof. The link L_{n} is obtained from L_{n}^{\prime} by adding the unknotted components K_{n+1} and K_{n+2} and performing a -1-twist around K_{n+1} and a +1 -twist around K_{n+2}. Adding an unknotted component with coefficient ∞ and twisting around a component does not change the surgery manifold, provided that the surgery coefficients are modified according to the Kirby calculus. Then, by the equivalence theorem about surgery descriptions of manifolds, $L^{\prime}(n-2,0,1 \ldots, 1)$ is equivalent to $L\left(\gamma_{1}, \ldots, \gamma_{n+2}\right)$, where the coefficients of the first n components remain unchanged, $\gamma_{n+1}=-1, \gamma_{n+2}=1$. By Theorem 3, $L_{n}(n-2,0 \ldots, 1,-1,1)$ has trivial fundamental group, hence it is homeomorphic to \mathbb{S}^{3}.

Figure 2. A Rail-Road-system for $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$
Corollary 5 The surgery manifold $M^{\prime}=L^{\prime}\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n}}{q_{n}}\right)$ with $q_{1}=1, p_{i}=0$
for a fixed index $i,\left|\frac{p_{j}}{q_{j}}\right|=1$ for $j \neq i$ and $i, j \in\{2, \ldots, n\}$ is homeomorphic to \mathbb{S}^{3}.
Proof. As in the previous proof, M^{\prime} is homeomorphic to $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ with the fixed values of the first n parameters, $\frac{p_{n+1}}{q_{n+1}}=1, \frac{p_{n+2}}{q_{n+2}}=-1$. By Theorem 3 and the conditions on the surgery coefficients, it is possible to obtain a reduced presentation for $\pi_{1}(M)$ in which all generators disappear. So $\pi_{1}(M)$ turns out to be the trivial group, hence $M^{\prime} \cong M \cong \mathbb{S}^{3}$.

Figure 3. The Teragaito's link L_{n}^{\prime}, for $n \geq 2$

4 Surgery homology spheres and lens spaces

Theorem 6. First homology group of the manifold $M=M\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ is presented by

$$
\begin{aligned}
\mathbb{H}_{1}(M)=\left\langle A_{1}, \ldots, A_{n}, B, C:\right. & {\left[A_{i}, A_{j}\right]=\left[B, A_{i}\right]=\left[C, A_{i}\right]=1,(i, j=1, \ldots, n) } \\
& {[B, C]=1, A_{1} q_{1}=A_{i} p_{i},(i=2, \ldots, n) } \\
& \left.A_{1}{ }^{p_{1}}=A_{2}{ }^{q_{2}} \ldots A_{n}^{q_{n}}, B^{p_{n+1}}=1, C^{p_{n+2}}=1\right\rangle,
\end{aligned}
$$

that is, $\mathbb{H}_{1}(M) \equiv \mathbb{Z}_{p_{n+1}} \oplus \mathbb{Z}_{p_{n+2}} \oplus G$, where G is the group presented by the generators A_{i} and the relations of $\mathbb{H}_{1}(M)$ involving only generators A_{i}.
Proof. Since $\mathbb{H}_{1}(M)$ is the abelianization of $\pi_{1}(M)$, we add the commutators $[x, y]=x y x^{-1} y^{-1}$ between the generators to the presentation of Theorem
3. The statement follows from standard reductions of the obtained group presentation.

Corollary 7. The manifold $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ is a homology sphere if and only if

$$
p_{n+1} p_{n+2}\left(\prod_{i=1}^{n} p_{i}-q_{1} \sum_{j=2}^{n} P(j) q_{j}\right)= \pm 1
$$

where $P(j)$ denotes the product of all coefficients $p_{i}, i \in\{2, \ldots, n\} \backslash\{j\}$.
Proof. The matrix representing the relators of $\mathbb{H}_{1}(M)$ is

$$
\mathcal{H}=\left(\begin{array}{ccccccc}
q_{1} & -p_{2} & 0 \ldots & 0 & 0 & 0 & 0 \\
q_{1} & 0 & -p_{3} & \vdots & 0 & 0 & 0 \\
\cdots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
q_{1} & 0 & 0 & \ldots & -p_{n} & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & p_{n+1} & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & p_{n+2} \\
p_{1} & -q_{2} & -q_{3} & \ldots & -q_{n} & 0 & 0
\end{array}\right)
$$

It is known that M is a homology sphere if and only if $\operatorname{det} \mathcal{H}= \pm 1$, and the statement follows by applying successively Laplace theorem to the $(n+2)$-th, $(n+1)$-th and n-th columns.

Corollary 8. Let $p_{i}, q_{i} \in \mathbb{Z},\left(p_{i}, q_{i}\right)=1, p_{i} \geq 0$, for $i=1, \ldots, n+2$ and the following conditions
(a) $p_{n+1}=1$ or $p_{n+2}=1$
(b.1) $p_{i}=\left|p_{1}-q_{1}\left(\sum_{j=2}^{n} q_{j}\right)\right|=1$, for $i=2, \ldots, n$
(b.2) $\left|q_{1}\right|=1, p_{i}=0,\left|q_{i}\right|=1$ for a fixed index $i \in\{2, \ldots, n\}, p_{j}=1$, for $j=2, \ldots, n$ and $j \neq i$
(c) $p_{i}=1, i=2, \ldots, n+2$.

If either one of $\mathbf{b} .1$ and $\mathbf{b .} \mathbf{2}$ holds together with \mathbf{a}, or \mathbf{c} holds, then the manifold $M=L\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{n+2}}{q_{n+2}}\right)$ is a homology lens space. In particular, if either $\mathbf{b} .2$ and a hold or $q_{n+1} q_{n+2}=0$ and \mathbf{c} hold, then M is just a lens space.

Proof. By Theorem 6, the surgery manifold M is a homology lens space if and only if exactly two of the sets $\mathbb{Z}_{p_{n+1}}, \mathbb{Z}_{p_{n+2}}$ and G are trivial and the remaining one has finite order. Now, condition (a) assures at least one of
$\mathbb{Z}_{p_{n+1}}, \mathbb{Z}_{p_{n+2}}$ is trivial; each one of the conditions (b.1) and (b.2) gets $G \cong 0$ and condition (c) gives $\mathbb{H}_{1}(M) \cong \mathbb{Z}_{p_{1}-q_{1}\left(q_{2}+\cdots+q_{n}\right)}$. This completes the proof for the homology lens spaces. To prove the second part, first suppose $\mathbf{b} .2$ holds and $p_{n+1}=1$ (the proof is analogous if $p_{n+2}=1$). The hypotheses allow us to eliminate the generators A_{j}, for $j \neq i, j \in\{1, \ldots, n\}$, and B by using relations $A_{j}=1$ and $B=C^{q_{n+2}} C^{-q_{n+2}}$. So we get $\pi_{1}(M) \equiv$ $\left\langle C: C^{p_{n+2}}=1\right\rangle \cong \mathbb{Z}_{p_{n+2}}$. If (c) holds and $q_{n+1}=0$, we can reduce the presentation of Theorem 3 to the equivalent one $\left\langle A_{1}^{-p_{1}+q_{1}\left(q_{2}+\cdots+q_{n}\right)}=\right.$ $\left.C^{q_{n+2}} C^{-q_{n+2}}, B=C=1\right\rangle \cong \mathbb{Z}_{t}$, where $t=-p_{1}+q_{1}\left(q_{2}+\cdots+q_{n}\right)$.

5 Covering properties

Let us denote with $H(q, l, m, r)$ the homology sphere $L_{n}\left(\frac{p}{q}, \frac{1}{q_{2}} \ldots, \frac{1}{q_{n}}, \frac{1}{l}, \frac{1}{m}\right)$, where $r=p-q \sum_{i=2}^{n} q_{i}$. By Theorem 4, we have eight classes of surgery homology spheres, depending on the values of $l, m, n, r \in\{-1,1\}$, for which we determine geometric presentations for the fundamental group and covering properties.

Theorem 9. The surgery manifold $H(q, l, m, r)$ has Heegaard genus equal to 2 and it is homeomorphic to the 2-fold cyclic covering of \mathbb{S}^{3} branched over the three-bridge knot $K(q, l, m, n)$.

Proof. Let us prove the statement for the manifold $H(q, 1,1,1)$; the proofs for the other homology spheres are analogous. By Theorem 3, we get a presentation for the fundamental group $\pi(q, 1,1,1$,) of $H(q, 1,1,1)$. The special values of the surgery coefficients allow to eliminate the generators C and A_{i} from the relations $C=A_{1}{ }^{q} B^{-1} A_{1}{ }^{-q} B$ and $A_{i}=A_{1}{ }^{q}, i=2, \ldots, n$. So we get the following presentation for $\pi(q, 1,1,1)$

$$
\begin{gathered}
\left\langle A_{1}, B: A_{1}^{-p+q \sum_{i=2}^{n} q_{i}}=B A_{1}^{q} B^{-1} A_{1}^{-q} B B^{-1}\left(A_{1}^{q} B^{-1} A_{1}^{-q} B\right)^{-1}\right. \\
\left.B^{-1}=\left(A_{1}^{q} B^{-1} A_{1}^{-q} B\right)^{-1} A_{1}^{-q} A_{1}^{q} B^{-1} A_{1}^{-q} B A_{1}^{q}\right\rangle
\end{gathered}
$$

which is equivalent to

$$
\left\langle A, B: B A^{1-q} B A^{q} B^{-1} A^{-q} B^{-1} A^{q}=1, A^{2 q} B A^{-q} B^{-1} A^{-q} B=1\right\rangle
$$

This presentation is geometric, that is it corresponds to a spine of the manifold $H(q, 1,1,1)$, as stated in Theorem 3, and it is induced by the Heegard diagram $\mathcal{G}(q, 1,1,1)$ in Figure 4 . In fact, the holes of the diagram correspond to the generators, and the closed curves between the holes correspond to the
relators of $\pi(q, 1,1,1)$. Hence, the Heegaard genus of $H(q, 1,1,1)$ is 2 . Moreover, the diagram $\mathcal{G}(1,1,1,1)$ is 2 -symmetric, that is it admits two different symmetries of order two. Following a costruction explained in $[\mathrm{BH}]$ and $[\mathrm{T}]$, we can state that $H(q, 1,1,1)$ is homeomorphic to the 2 -fold covering of the sphere branched over a well-specified three-bridge link (in the general case) directly obtainable from the diagram $\mathcal{G}(q, 1,1,1)$. The symmetry axes fixed by one of the involutions of $\mathcal{G}(q, 1,1,1)$ become the bridges of the branch set. Note that even if for $q=1$ we have a slightly different Heegaard diagram with respect to $\mathcal{G}(q, 1,1,1), q>1$, in Figure 4, the branch set of Figure 5 holds for all the non-negative values of q. In Figures 6-11 are depicted Heegaard diagrams and branch sets for the others homology spheres.

Figure 4. A Heegaard diagram of $H(q, 1,1,1)$, for $q \geq 2$

Figure 5. The branch set $K(q, 1,1,1)$

Figure 6. A Heegaard diagram of $H(q, 1,-1,1)$, for $q \geq 2$

$$
\mathrm{q} \text { crossings }
$$

Figure 7. The branch set $K(q, 1,-1,1)$

Figure 8. A Heegaard diagram of $H(q,-1,-1,1)$, for $q \geq 2$

Remark. The fundamental groups of the homology spheres $H(q, l, m, r)$ turn out to be pairwise isomorphic, since they admit equivalent presentations. In particular, $\pi(q, 1,1,1) \cong \pi(q,-1,-1,-1), \pi(q, 1,-1,1) \cong \pi(q,-1,1,-1)$, $\pi(q,-1,-1,1) \cong \pi(q, 1,1,-1)$ and $\pi(q,-1,1,1,1) \cong \pi(q, 1,-1,1,-1)$.

Figure 8. A Heegaard diagram of $H(q,-1,-1,1)$, for $q \geq 2$

Figure 9. The branch set $K(q,-1,-1,1)$

Figure 10. A Heegaard diagram of $H(q,-1,1,1)$, for $q \geq 2$

Figure 11. The branch set $K(q,-1,1,1)$
By applying Wirtinger algorithm to our branch sets, we obtain presentations for the knot groups $\pi(q, l, m, r) \cong \pi_{1}\left(\mathbb{S}^{3} \backslash K(q, l, m, r)\right)$ with two generators. Hence these knots are prime by Norwood ([N]). Recall that for a real number x, the symbol $\lfloor x\rfloor$ indicates the integer part of x, that is, the largest integer not greater than x.

Theorem 10. The knots $K(q, l, m, n)$ are prime, and the knot group $\pi(q, l, m, r)$ admits the following presentation

$$
\pi(q, l, m, n)=\left\langle a, b: b^{\tau}\left[a^{2}, b^{2}\right]^{\left\lfloor\frac{q}{2}\right\rfloor} w\left[b^{-2} a^{-2}\right\rfloor^{\left\lfloor\frac{q}{2}\right\rfloor}\right\rangle
$$

where

$$
\tau=\left\{\begin{array}{rc}
-5 & l=m=1 \\
-7 & l=1, m=-1 \\
3 & l=-1, m=1, q>1 \\
1 & \text { otherwise }
\end{array}\right.
$$

and

$$
w= \begin{cases}a^{3} & l=1, q \text { odd } \\ b^{2} a b^{2} & l=1, q \text { even } \\ a^{2} b^{2} a^{-1} b^{2} a^{2} & l=-1, q \text { odd } \\ a & l=-1, q \text { even }\end{cases}
$$

Remark Note that the knot $K(1,1,1,1)$ is equivalent to the torus knot $T(3,5)$ and the knot $K(1,-1,1,1)$ is equivalent to the torus knot $T(3,7)$; moreover, the knots $K(1,-1,1,1)$ and $K(1,-1,-1,1)$ are equivalent to the ($-2,3,7$)-pretzel knot. This means that the manifold $\mathrm{H}(1,1,1,1)$ (resp. $\mathrm{H}(1,-1,1,1))$ is homeomorphic to the Brieskorn manifold $M(3,5,2)$ (resp. $M(3,7,2)$) in the classic notation of $[\mathrm{M}]$.

References

[A] D. Auckly, Two Fold Branched Covers, preprint.
[B] J. Berge, Embedding the exteriors of one-tunnel knots and links in the 3-sphere, preprint.
[BH] J.S. Birman, H.M. Hilden, Heegaard splittings of branched coverings of \mathbb{S}^{3}, Trans. Amer. Math. Soc., 213 (1975), 315-352.
[CST] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Fundamental group and Covering Properties of Hyperbolic Surgery Manifolds, Geometry, Volume 2013 (2013), ID 484508, http://dx.doi.org/10.1155/2013/484508.
[GL] C. McA. Gordon, J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
[KK] S.H. Kim., Y. Kim, On hyperbolic 3-manifolds obtained by Dehn surgery on links, Intern. J. of Mathematics and Math. Sciences, Volume 2010, ID 573403, doi:10.1155/2010/573403.
[MOS] H. Matsuda, M. Ozawa, K. Shimokawa, On non-simple reflexive links, J. Knot Theory and iits Ram. 11 (2002), 787-791.
[M] J. Milnor, On the 3dimensional Brieskorn manifolds $M(p, q, r)$, Ann. Math. Studies 84 (1975), 175-225.
[N] F. H. Norwood, Every two-generator knot is prime, Proceed. of the Amer. Math. Soc. 86 (1982) (1), 143-147.
[O] M. Ochiai, Heegaard diagrams of 3-manifolds, Trans. Amer. Math. Soc., 328 (1991), 863-879.
[OS] R.P. Osborne, R. Stevens, Group presentations corresponding to spines of 3-manifolds. II, Trans. Amer. Math. Soc., 234 (1) (1977), 213-243
[R] D. Rolfsen, Knots and Links, Math. Lect. Ser., 7, Publish or Perish, Berkeley, 1976.
[T] M. Takahashi, Two knots with the same 2fold branched covering space, Yokohama Math. J., 25 (1) (1977), 9199.
[Te] , M. Teragaito, Lens with surgery yielding the 3-sphere, J. Knot Theory Ramifications, 11, 105 (2002).

Marina De Simone
Dipartimento di Matematica "Giuseppe Peano"
Via Carlo Alberto 10
Torino, Italy
Agnese Ilaria Telloni
Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche
Via Brecce Bianche
Ancona, Italy

