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Abstract. In this paper we consider perturbed evolution systems governed by
the p–Kirchhoff operator in bounded domains. These models are characterized
by time dependent nonlinear driving forces and boundary damping terms. The
question of non–continuation of maximal solutions is treated and some a priori
estimates for the lifespan of solutions are given.

1. Introduction

In this paper we are interested in p–Kirchhoff systems involving nonlinear driv-
ing and damping terms in bounded domains, under dynamic boundary conditions.
More precisely, we study the problem

(1.1)

⎧⎪⎨
⎪⎩
utt −M

(
‖Du(t, ·)‖pp

)
Δpu+ μ|u|p−2u = f(t, x, u), in R

+
0 × Ω,

u(t, x) = 0, on R
+
0 × Γ0,

utt=−
[
M(‖Du(t, ·)‖pp)|Du|p−2∂νu+Q(t, x, u, ut)

]
, on R

+
0 × Γ1.

The function u = (u1, . . . , uN ) = u(t, x) represents the vectorial displacement,
N ≥ 1, R

+
0 = [0,∞) and Ω is a regular bounded domain of R

n. We assume
that ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅ and μn−1(Γ0) > 0, where μn−1 denotes the
(n − 1)–dimensional Lebesgue measure on ∂Ω. The exponent p > 1 and Δpu =
div(|Du|p−2Du) = div(|Du|p−2Du1, . . . , |Du|p−2DuN ) is the vectorial p–Laplacian
operator.

The Kirchhoff dissipative function M is assumed of the standard form

(1.2) M(τ ) = a+ bγτγ−1, a, b ≥ 0, a+ b > 0,

with γ > 1 if b > 0, and γ = 1 if b = 0. Problem (1.1) is said to be non–degenerate
when a > 0, otherwise (1.1) is called degenerate. The term μ|u|p−2u, with μ ≥ 0,
is a nonlinear perturbation acting on the system.

Following [22], we take the internal nonlinear source force f of the type

(1.3) f(t, x, u) = g(t, x)|u|σ−2u+ c(x)|u|q−2u,
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where 1 ≤ σ < q, the function c ∈ L∞(Ω) is non–negative, g ∈ C(R+
0 × Ω) is

non–positive, differentiable with respect to t and gt ∈ C(R+
0 × Ω). More specific

assumptions on f will be given in Section 2. The negative term of (f(t, x, u), u),
deriving from g, makes the analysis more delicate than in [23,24], since it works
against the blow up and against the non–continuation of local solutions. ¿From here
on (·, ·) denotes the usual scalar product in R

N .
Concerning the external nonlinear boundary damping Q, we suppose that

Q(t, x, u, v) = d1(t, x)|u|κ|v|m−2v + d2(t, x, u)|v|℘−2v,

where d1 and d2 are non–negative continuous functions, satisfying integrability con-
ditions with respect to the space variable, and κ, m, ℘ are positive constants such
that κ ≥ 0 and 1 < m ≤ ℘− κ. More detailed assumptions on Q will be stated in
Section 2.

The interest in p–Kirchhoff models, besides the mathematical curiosity, derives
from the several applications they have in reaction–diffusion theory and in non–
Newtonian theory, where it is evident the role of each term of the system in the
global behavior of the body. For example, thinking of fluids, the quantity p is
characteristic of the medium, and its magnitude is representative of the elastic
and/or pseudoplastic properties of the fluid, see [3,19] and the references therein.

The boundary conditions in (1.1) express the fact that the system does not ne-
glect acceleration terms on the boundary. They are usually called dynamic boundary
conditions and arise in several physical applications. In one dimension and in the
scalar case, problem (1.1) models the dynamic evolution of a viscoelastic rod fixed
at one end and with a tip mass attached to its free end. The dynamic boundary
conditions represent the Newton law for the attached mass, cfr. [2,11,18]. In the
two dimensional space and for N = 1, these boundary conditions appear in the
transverse motions of a flexible membrane Ω which boundary ∂Ω may be affected
by vibrations only in the region Γ1, see [17]. More details on the physical meaning
of the boundary conditions in (1.1), as well as on the so–called acoustic boundary
conditions for exterior domains in R

3, can be found in [6,9,13].
In the last years there has been an increasing attention towards problems in-

volving dynamic boundary conditions, and many different related topics have been
considered. In [20] the author studies the well–posedness of initial–boundary value
wave problems and the qualitative properties of the solutions. For the existence and
asymptotic stability of solutions of strongly damped wave equations, even with de-
lay terms, we quote [16] and the references therein. The recent paper [15], somehow
based on [24], treats the blow up of solutions of the strongly damped model

(1.4)

⎧⎪⎨
⎪⎩
utt −Δu− �Δut = |u|q−2u, in R

+
0 × Ω,

u(t, x) = 0, on R
+
0 × Γ0,

utt = − [∂νu+ �∂νut + rut] , on R
+
0 × Γ1,

with � > 0, r > 0 and q > 2. The exponential growth at infinity of the energy has
been analyzed in [14] for the nonlinear damping case, that is when rut in (1.4) is
replaced by r|ut|m−2ut, with m ≥ 2. The energy estimates given in [14] have been
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extended in [5] to the more general system

⎧⎪⎨
⎪⎩
utt −M

(
‖Du(t, ·)‖22

)
Δu− �(t)Δut + μu = f(t, x, u), in R

+
0 × Ω,

u(t, x) = 0, on R
+
0 × Γ0,

utt=−
[
M(‖Du(t, ·)‖22)∂νu+�(t)∂νut+Q(t, x, u, ut)

]
, on R

+
0 × Γ1,

where � ∈ C(R+
0 ) is a nonnegative function.

The present paper is connected with [4, 6]. In [4] we give a priori estimates
for the lifespan T of maximal solutions of polyharmonic Kirchhoff systems, under
homogeneous Dirichlet boundary conditions. The lifespan T of a solution u is
defined by

T = sup{t > 0 : u exists in [0, t)}.

In [6] we treat the question of global non–existence of solutions of (1.1), and here
we complete the picture, obtaining lifespan estimates for them.

The main result of this paper is Theorem 3.1, in which an upper bound T0 for
T is found, when the initial data belong to an appropriate region Σ0 in the phase
plane. Indeed, we identify two critical values E0 and υ0, with the property that
if Eu(0) < E0 and ‖Du(0, ·)‖p > υ0, then T ≤ T0. Here Eu(0) and ‖Du(0, ·)‖p
are the energy of the system along a solution u and the Sobolev norm of u at the
time zero, respectively. Moreover, T0 depends only on the initial data and on the
parameters of (1.1).

Theorem 3.1 extends Theorem 6.1 of [4] to the case of p–Kirchhoff systems
with dynamic boundary conditions. The key points in the proof are Sobolev type
embeddings given in [10] and a deep use of the energy functional E associated
to (1.1). The study of the geometric features of the model, connected with the
properties of E, leads to a crucial qualitative analysis of the problem. In particular,
Lemma 2.2 and Proposition 2.4 are essential in the proof of the non–continuation
Theorem 3.1.

The extension of Theorem 6.1 of [4] to (1.1) presents several difficulties. Indeed,
as in [6], the boundary action of Q forces the choice of a new functional setting,
together with Sobolev interpolation embeddings, and requires additional global
lower bounds for ‖Du(t, ·)‖p in the energy estimates. Consequently, the expression
of T0 given in Theorem 3.1 is much more involved than the corresponding value
obtained in [4] for polyharmonic Kirchhoff systems.

The delicate argument of the proof of Theorem 3.1 guarantees global non–
existence of solutions of (1.1), but it does not establish by itself that maximal
solutions blow up at the lifespan T . It is worth noting that in general the proofs of
global non–existence in the literature do not imply finite time blow up of the solu-
tions. Indeed, without a local continuation argument, the solution, before becoming
unbounded, could leave the domain of one of the differential operators involved in
the problem. For a more detailed discussion on this point we refer the interested
reader to [4,8] and the references therein.

In Corollary 3.3 we obtain a finite time blow up result, extending Corollary 6.2
of [4] to (1.1). Finally, in Corollary 3.4 we give simplified expressions of T0, when
Q is of a special form interesting in applications. As far as we know, this paper
is the first attempt to give lifespan estimates for maximal solutions of p–Kirchhoff
systems governed by nonlinear driving and dissipative boundary forces.
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2. Preliminaries

The functional setting. For simplicity consider 1 < p < n, and denote by Lp(Ω)

the usual Lebesgue space equipped with the norm ‖φ‖p =
(∫

Ω
|φ(x)|p dx

)1/p
. If

ω ≥ 1, we endow Lω(Γ1) with the norm ‖φ‖ω,Γ1
=

(∫
Γ1

|φ(x)|ωdμn−1

)1/ω

. Let

W 1,p
Γ0

(Ω) = {φ ∈ W 1,p(Ω) : φ|Γ0
= 0},

equipped with the norm ‖φ‖W 1,p
Γ0

(Ω) = ‖Dφ‖p, where φ|Γ0
= 0 is understood in the

trace sense. In the following, we shall simply denote ‖φ‖W 1,p
Γ0

(Ω) by ‖φ‖. The norm

‖ · ‖ is equivalent to ‖ · ‖W 1,p(Ω) by the Poincaré inequality, see [25, Corollary 4.5.3
and Theorem 2.6.16]. In particular, inequality (4.5.2) of [25] reduces to

(2.1) ‖φ‖p∗ ≤ Cp∗‖Dφ‖p for all φ ∈ W 1,p
Γ0

(Ω),

where p∗ = np/(n−p), Cp∗ = C(n,N, p,Ω) · [B1,p(Γ0)]
−1/p, and the Bessel capacity

B1,p(Γ0) > 0 since μn−1(Γ0) > 0, cf. [25, Theorem 2.6.16]. Then, the embedding

W 1,p
Γ0

(Ω) ↪→ Lq(Ω) is continuous whenever 1 ≤ q ≤ p∗, and so there exists a constant
Cq > 0 such that

(2.2) ‖φ‖q ≤ Cq‖Dφ‖p for all φ ∈ W 1,p
Γ0

(Ω).

Similarly, for s ∈ (0, 1), let

W s,p
Γ0

(Ω) = {φ ∈ W s,p(Ω) : φ|Γ0
= 0},

equipped with the norm ‖φ‖W s,p
Γ0

(Ω) = ‖φ‖W s,p(Ω), where W s,p(Ω) is the fractional

Sobolev space of order s, see [1].
The elementary bracket pairing 〈ϕ, ψ〉 =

∫
Ω
(ϕ(x), ψ(x))dx is clearly well de-

fined for all ϕ, ψ such that (ϕ, ψ) ∈ L1(Ω) and 〈u, φ〉Γ1
=

∫
Γ1
(u(x), φ(x))dμn−1 is

well defined for all u, φ such that (u, φ) ∈ L1(Γ1).
Since we are in the vectorial setting, for simplicity we shall use the notation

Lp(Ω) also to denote the product space [Lp(Ω)]N or [Lp(Ω)]nN , and the same
agreement will be adopted for all the other spaces involved in the treatment.

The set
X = C(I → W 1,p

Γ0
(Ω)) ∩ C1(I → L2(Ω))

is the solution and test function space. Here I = [0, T ), with T ∈ (0,∞], is the
maximal time existence interval for a solution u ∈ X of (1.1). In other words, the
lifespan T of u is defined by

T = sup{t > 0 : u exists in [0, t)}.
In what follows p∗ = p(n− 1)/(n− p) and (pn)

∞
n=1, with

(2.3)
2n

n+ 1
< pn =

1

2
[
√
(n+ 1)2 + 4n+ 1− n] < 2.

Clearly, (pn)
∞
n=1 is a strictly increasing sequence, with p3

.
= 1, 65 and limn→∞ pn =

2, cfr. [6].

Proposition 2.1 (Proposition 3.1 of [6]). Given p ∈ (pn, n) and q > max{2, p},
then

(2.4) ℘0 =
pq(n− 1 + p)− p2(n− 1)

n(q − p) + p2
∈ (max{2, p},min{p∗, q}).
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From the proof of Proposition 2.1 it is clear that the assumption p > pn is
needed only to show that ℘0 > 2. Condition ℘0 > 2 is crucial in the proof of the
main Theorem 3.1. Of course, if 1 < p < n, in order to have pn < n it is enough to
take n > 3/2, that is n ≥ 2.

On the internal source force f and the external damping Q. We are going
to present some prototypes for f and Q, first introduced in [22], in the form given
in [4,6].

The nonlinear term f : R
+
0 × Ω × R

N → R
N in (1.3) satisfies the further

assumption

(2.5)

1 ≤ σ < q, max{2, γp} < q ≤ p∗, c∞ = ‖c‖∞ > 0, c = ess infΩc > 0;

0 ≤ −g(t, x), gt(t, x) ≤ h(x) in R
+
0 × Ω, for some h ∈ L1(Ω),

g(t, ·) ∈ Lq/(q−σ)(Ω) in R
+
0 .

Clearly, condition max{2, γp} < q ≤ p∗ implies 1 ≤ γ < n/(n − p) and p >
2n/(n+ 2).

Thanks to the integrability properties of g and to the boundedness of c, it
results that (f(t, x, φ), φ(t, x)) ∈ L1(Ω) for all t ∈ R

+
0 and for all φ ∈ W 1,p

Γ0
(Ω).

Moreover, as shown in [6, Lemma 4.1] (see also [7, Lemma 4.1]), the function
f admits a potential F : R+

0 × Ω× R
N → R, that is f(t, x, φ) = ∇φF (t, x, φ), with

F (t, x, 0) = 0 and

F (t, x, φ) = g(t, x)
|φ|σ
σ

+ c(x)
|φ|q
q

.

Of course, for any (t, x, φ) ∈ R
+
0 ×Ω×W 1,p

Γ0
(Ω), the potential F is well defined and

of class L1(Ω). In other words,

(2.6) Fφ(t) = F (t, φ) =

∫
Ω

{
g(t, x)

|φ(t, x)|σ
σ

+ c(x)
|φ(t, x)|q

q

}
dx

for all φ ∈ W 1,p
Γ0

(Ω). Thus, differentiation under the integral sign gives

Ft(t, φ) =

∫
Ω

gt(t, x)
|φ(x)|σ

σ
dx ≥ 0 for all (t, φ) ∈ R

+
0 ×W 1,p

Γ0
(Ω).

Finally, 〈f(t, ·, φ), φ(t, ·)〉 ∈ L1
loc(R

+
0 ) along any φ ∈ W 1,p

Γ0
(Ω) and

(2.7) qFφ(t) ≤ 〈f(t, x, φ(t, x)), φ(t, x)〉 ≤ c∞‖φ(t, ·)‖qq,

for all t ∈ R
+
0 and φ ∈ W 1,p

Γ0
(Ω), being σ < q and g ≤ 0.

Concerning the boundary damping Q, assume that for all (t, x, u, v) ∈ R
+
0 ×

Γ1 × R
N × R

N

(2.8)
Q(t, x, u, v) = d1(t, x)|u|κ|v|m−2v + d2(t, x, u)|v|℘−2v,

1 < m ≤ ℘− κ, 0 ≤ κ ≤ p(1−m/℘), 2 ≤ ℘ < ℘0,

where d1 ∈ C(R+
0 → L℘1(Γ1)) and d2 ∈ C(R+

0 → L∞(Γ1) are non–negative and

℘1 =

{
℘/(℘− κ−m), if ℘ > m+ κ,

∞, if ℘ = m+ κ.

Usually in the literature the dissipative function Q is considered in the simplified
form in which d1(t, x) ≡ d1 > 0, κ = 0 and d2 ≡ 0.
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The energy of the system. For all τ ∈ R
+
0 we set M (τ ) = aτ + bτγ , so that

(2.9) γM (τ ) ≥ τM(τ ) for all τ ∈ R
+
0 .

The total energy of the field φ ∈ X associated with (1.1) is

(2.10) Eφ(t) =
1

2
(‖φt(t, ·)‖22 + ‖φt(t, ·)‖22,Γ1

) + A φ(t)− Fφ(t),

where F is given in (2.6) and

pA φ(t) = M (‖Dφ(t, ·)‖pp) + μ‖φ(t, ·)‖pp ≥ 0,

by (1.2), being μ ≥ 0. Of course Eφ is well defined in X by (2.5).
For all φ ∈ X and (t, x) ∈ R

+
0 × Ω put pointwise

Aφ(t, x) = −M(‖Dφ(t, ·)‖pp)Δpφ(t, x) + μ|φ(t, x)|p−2φ(t, x),

so that A is the Fréchet derivative of A with respect to φ, and

(2.11)

〈〈Aφ(t, ·), φ(t, ·)〉〉 : = 〈Aφ(t, ·), φ(t, ·)〉(W 1,p
Γ0

(Ω),[W 1,p
Γ0

(Ω)]′)

= M(‖Dφ(t, ·)‖pp)‖Dφ(t, ·)‖pp + μ‖φ(t, ·)‖pp
≤ γpA φ(t),

by (1.2), (2.9), being μ ≥ 0 and γ ≥ 1.

Following [6,21], we say that u ∈ X is a (weak) solution of (1.1) if u satisfies:

(A) Distribution Identity

〈ut, φ〉
]t
0
=

∫ t

0

{
〈ut, φt〉 −M(‖Du(τ, ·)‖pp) · 〈|Du|p−2Du,Dφ〉 − μ〈|u|p−2u, φ〉

+ 〈f(τ, ·, u), φ〉 − 〈Q(τ, ·, u, ut) + utt, φ〉Γ1

}
dτ

for all t ∈ I and φ ∈ X;

(B) Energy Conservation

(i) Du(t) = 〈Q(t, ·, u(t, ·), ut(t, ·)), ut(t, ·)〉Γ1
+ Ftu(t) ∈ L1

loc(I),

(ii) Eu(t) ≤ Eu(0)−
∫ t

0

Du(τ )dτ for all t ∈ I.

Observe that Du ≥ 0 in I, being Ftu ≥ 0 and 〈Q(t, ·, u(t, ·), ut(t, ·)), ut(t, ·)〉Γ1
≥ 0

by (1.3), (2.5) and (2.8).
To make the Distribution Identitymeaningful we assume that 〈Q(t, ·, u, ut), φ〉Γ1

and 〈utt, φ〉Γ1
are in ∈ L1

loc(I), along any field φ ∈ X. The other terms in the
Distribution Identity (A) are well defined thanks to the choice of f , Q and X.

Some auxiliary results. From here on, we put ς = a if b = 0 or ς = b if b > 0 in
(1.2). Moreover, if u ∈ X is a solution of (1.1) we shall write υ(t) = ‖Du(t, ·)‖p
for each t ∈ I.

Lemma 2.2 (Lemma 4.4 of [6]). Assume (1.3) and (2.5). If u ∈ X is a solution
of (1.1), then for all t ∈ I

(2.12) Eu(t) ≥ ϕ(υ(t)) =
ς

p
υ(t)γp − c

q
υ(t)q,

where c = c∞Cq
q and Cq is the embedding constant introduced in (2.2).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LIFESPAN ESTIMATES FOR p–KIRCHHOFF SYSTEMS 65

The function ϕ : R+
0 → R introduced in Lemma 2.2 attains its maximum at

υ0 =
( ςγ

c

)1/(q−γp)

.

Moreover, ϕ is strictly decreasing for υ ≥ υ0, with ϕ(υ) → −∞ as υ → ∞. Finally,

(2.13)
ϕ(υ0) =

(
1− γp

q

)
w0 = E0 > 0, where w0 =

ςυγp
0

p
> 0,

Σ0 = {(υ,E) ∈ R
2 : υ > υ0, E < E0}.

In the sequel, given a solution u ∈ X of (1.1), we put for convenience

(2.14)

w1 = inf
t∈I

A u(t), w2 = inf
t∈I

Fu(t),

E1 =

(
1− γp

q

)
w1, E2 =

(
q

γp
− 1

)
w2.

The next lemma establishes some crucial properties, deriving from the geometry
of the system, which link the energy functional E to the main elliptic part A and
the potential F . For polyharmonic Kirchhoff systems with internal damping, a
similar result has been proved in [4]. The main steps are formally the same, but
for the sake of clarity and completeness, we write them below, since the functional
A is essentially different from the corresponding elliptic functional of [4]. In the
stationary case and for higher order models, we refer to [12] for the existence of solu-
tions of p–polyharmonic Kirchhoff systems under homogeneous Dirichlet boundary
conditions.

From now on, u ∈ X is a fixed solution of (1.1) such that Eu(0) < E0.

Lemma 2.3. It results that υ0 /∈ υ(I) and w1 �= w0. Moreover, the following
are equivalent:

(i) w1 > w0;

(ii) υ(I) ⊂ (υ0,∞);
(iii) w2 > γpw0/q.

Finally, if one of the conditions (i)–(iii) holds, then E0 < E1 < E2.
In particular, if (υ(0), Eu(0)) ∈ Σ0, then (υ(t), Eu(t)) ∈ Σ0 for all t ∈ I,

properties (i)–(iii) hold, E0 < E1 < E2 and w2 > γpw1/q > γpw0/q.

Proof. Let u ∈ X be a solution of (1.1) and assume that Eu(0) < E0. Sup-

pose by contradiction that υ0 ∈ υ(I). Then there exists a sequence (tj)j ⊂ I such
that υ(tj) → υ0 as j → ∞. Now, by (2.12) we have E0>Eu(0)≥Eu(tj)≥ϕ(υ(tj)),
which provides E0 > E0 by the continuity of ϕ ◦ υ. This contradiction proves the
claim.

We show that w1 �= w0. Otherwise, A u(t) ≥ w1 = w0 for all t ∈ I. Therefore,
by (2.7), (2.10) and (2.13), we have

(2.15)
A u(t)− ςγ

q
υ(t)γp ≥

(
1− γp

q

)
A u(t) ≥ E1 = E0 > Eu(0)

≥ A u(t)− c

q
υ(t)q,
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so that υ(t) > υ0 for each t ∈ I. Consequently, υ(I) ⊂ (υ0,∞). On the other hand,
there exists a sequence (tj)j such that A u(tj) → w1 = w0 as j → ∞, so that

lim sup
j→∞

υ(tj) ≤ lim
j→∞

[pA u(tj)/ς]
1/γp = [pw0/ς]

1/γp = υ0,

which contradicts the fact that υ(I) ⊂ (υ0,∞). Hence w1 �= w0.

It remains to prove the equivalence of (i)–(iii).

(i) ⇒ (ii). It is enough to show that υ(I) ⊂ (υ0,∞), which immediately gives

υ(I) ⊂ (υ0,∞), being υ0 /∈ υ(I). Relation w1 > w0 implies E1 > Eu(0). Then,
repeating the calculation made in (2.15), we obtain again υ(t) > υ0 for all t ∈ I.

(ii) ⇒ (iii). If υ(t) > υ0 for all t ∈ I, then Fu(t) ≥ w0−Eu(0) > w0−E0 = γpw0/q
for all t ∈ I by (2.10) and so w2 > γpw0/q.

(iii) ⇒ (i). By (2.7) and (iii) we have

c

q
υ(t)q ≥ Fu(t) ≥ w2 >

γp

q
w0 =

c

q
υq
0,

which implies υ(t) > υ0 for all t ∈ I. Hence, w1 ≥ w0 by (2.14). Consequently, we
get w1 > w0, since the case w1 = w0 cannot occur.

Finally, if one of the conditions (i)–(iii) holds, then E0 < E1 by (i). Further-
more, Fu(t) ≥ w1 − Eu(0) > w1 − E1 = γpw1/q for all t ∈ I by (2.10). Hence,
w2 > γpw1/q and so E1 < E2. In conclusion E0 < E1 < E2, as claimed. The last
part of the lemma follows at once from the previous arguments. �

The positive numbers introduced in (2.14) clearly depend on the fixed solution
u of (1.1). Therefore, it is not possible to evaluate them. However, they play a
crucial role in the next proposition, where a priori estimates on the Sobolev norm
of u are obtained, see also[4]–[7] and [21]–[23]. These estimates are essential in the
proof of Theorem 3.1.

Proposition 2.4. For all t ∈ I

(2.16) ‖u(t, ·)‖q ≥ c1 and ‖Du(t, ·)‖p ≥ c1/Cq,

where c1 = (γpw0/c∞)1/q > 0 and Cq is the Sobolev constant given in (2.2).
Furthermore, for all t ∈ I

(2.17) pA u(t) ≥ a1‖Du(t, ·)‖pp,

where a1 = a+ b(c1/Cq)
p(γ−1) > 0.

Proof. Let u ∈ X be a solution of (1.1) as in the statement. By (2.7) and
Lemma 2.3–(iii) we have that for all t ∈ I

‖u(t, ·)‖qq ≥
q

c∞
Fu(t) ≥ q

c∞
w2 >

γp

c∞
w0,

which gives (2.16)1. Hence, (2.16)2 is true by (2.2). Finally, (2.17) is exactly
formula (2.8) of [6]. �

Without loss of generality in what follows we assume that

(2.18) c1, c1C
−1
q ∈ (0, 1].
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3. Lifespan estimates for (1.1)

In Theorem 3.1 we give a priori estimates for the lifespan T of the maximal
solutions of (1.1). We first list the structural assumptions on f , Q and the pa-
rameters of the problem. Then, we recall some Sobolev type inequalities, useful
in the proofs. Finally, we state and prove Theorem 3.1, and give some corollaries
interesting in applications.

Throughout the section, unless otherwise specified, take p ∈ (pn, n), with pn
given in (2.3). Let ℘0 be the positive number defined in (2.4). Assume (1.3), (2.5),
(2.8) and define

(3.1) δ1(t) = ‖d1(t, ·)‖℘1,Γ1
and δ2(t) = sup

(x,ξ)∈Γ1×RN

d2(t, x, ξ) for all t ∈ R
+
0 .

Since ℘ < ℘0 by (2.8), the embedding L℘0(Γ1) ↪→ L℘(Γ1) is continuous and there
exists S0 > 0, such that ‖φ‖℘,Γ1

≤ S0‖φ‖℘0,Γ1
for all φ ∈ L℘0(Γ1). The crucial

parameter

s =
n

p
− n− 1

℘0
∈ (0, 1).

The embedding W s,p
Γ0

(Ω) ↪→ L℘0(Γ1) is continuous, thanks to [1, Theorem 7.58,
with χ = 0, k = n− 1], being ℘0 > p by Proposition 2.1. In particular, there exists
S1 > 0 such that

(3.2) ‖φ‖℘0,Γ1
≤ S1‖φ‖W s,p

Γ0
(Ω) for all φ ∈ W s,p

Γ0
(Ω).

Finally, by [10, Corollary 3.2–(a), with s1 = 0, s2 = 1, p1 = p2 = p and θ = 1− s],

also the embedding W 1,p
Γ0

(Ω) ↪→ W s,p
Γ0

(Ω) is continuous and so there exists S2 > 0

such that for all φ ∈ W 1,p
Γ0

(Ω)

(3.3) ‖φ‖W s,p
Γ0

(Ω) ≤ S2‖φ‖1−s
p ‖Dφ‖sp ≤ S2μn(Ω)

(1−s)(q−p)/pq‖φ‖1−s
q ‖Dφ‖sp,

since p < q, and μn is the n–dimensional Lebesgue measure on Ω. In conclusion,

(3.4) ‖φ‖℘,Γ1
≤ S‖φ‖1−s

q ‖Dφ‖sp for all φ ∈ W 1,p
Γ0

(Ω),

where S = S0S1S2μn(Ω)
(1−s)(q−p)/pq. Without loss of generality we assume S ≥ 1,

since s < 1 and q > p.
Suppose that there exists k ∈ W 1,1

loc (R
+
0 ), with k′ ≥ 0 in R

+, k0 = k(0) > 0,
verifying

(3.5) δ
1/(m−1)
1 + δ

1/(℘−1)
2 ≤ k in R

+
0 ,

and

(3.6)

∫ ∞
k(t)−(1+θ)dt = ∞,

for some θ ∈ (0, θ0], where

(3.7) θ0 = min

{
q − 2

q + 2
,

r

1− r

}
, r =

1

℘
−
(
1− s

q
+

s

p

)
, r =

θ

1 + θ
.
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Put

(3.8)

α1 = (1− s)
(
1 +

κ

m

)
− q

{
1

m
− s

p

(
1 +

κ

m

)}
, α2 = 1− s− q

(
1

℘
− s

p

)
,

q1 = 21/(m−1)cα1−α2
1 S1+κ/m, C = S1S2μn(Ω)

(1−s)(q−p)/pq+(℘0−2)/2℘0 ,

C = C
2/(1−2r) (c1/Cq)

2sq/[q(1−2r)−2(1−s)]−p ,

where c1 is given in Proposition 2.4 and satisfies (2.18).
Observe that

(3.9)
n

p
− n− 1

℘
< s <

(
q

℘
− 1

)/(
q

p
− 1

)
,

being ℘ < ℘0. Combining (3.9) with the fact that κ ≤ (℘−m)p/℘ by (2.8), we get
α1 ≤ α2 < 0.

From now on, we denote by u0(x) = u(0, x) and u1(x) = ut(0, x) for each
x ∈ Ω.

Theorem 3.1. Assume that

(3.10) Eu(0) < E0 and ‖Du(0, ·)‖p > υ0.

Denoted by

(3.11)

H0 = E0 − [Eu(0)]+ > 0, 0 < ε0 < min

{
q − σ, q − γp− q[Eu(0)]+

w0

}
,

c2 = min

{
cε0
q

,
ε0(q − ε0 − γp)

pq

[
a+ b

(
c1
Cq

)p(γ−1)
]}

> 0,

� = min

{
1

2
,
c2
2q1

(
γpH0

c∞

)r
}
,

λ = max

{
q1(c∞/γp)rH r−r

0

(1− r)�m′/m
,
2[〈u0, u1〉+ 〈u0, u1〉Γ1

]−

k0H
1/(1+θ)
0

,
1

k0

}
,

K = 2 · 4 r
1−r

{
c∞
γp

+ C + c
2−q(1−2r)

1−2r

1 μn(Ω)
q−2

q(1−2r)

}
max

{
1,

1

c2

}
,

Z0 = λk0H
1−r
0 + 〈u0, u1〉+ 〈u0, u1〉Γ1

,

then T ≤ T0, where T0 is the unique positive number satisfying

(3.12)

∫ T0

0

k(t)−(1+θ)dt =
Kλ

θ

(
λ

Z0

)θ

.

Proof. We somehow follow the ideas contained in [4,6]. For each t ∈ I put

H (t) = H0 +

∫ t

0

Du(τ )dτ.

Of course, H is well defined and non–decreasing, being D ≥ 0 and finite along u.
Moreover, by (B)–(ii) we get

(3.13) [Eu(0)]+ − Eu(t) ≥ H (t) ≥ H0 for t ∈ I.

Define furthermore for all t ∈ I the function

Z (t) = λk(t) [H (t)]1−r + 〈ut(t, ·), u(t, ·)〉+ 〈ut(t, ·), u(t, ·)〉Γ1
,
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where r ∈ (0, 1) and λ > 0 are given in (3.7) and (3.11), respectively. Clearly

Z ∈ W 1,1
loc (I), so that a.e. in I,

(3.14) Z ′ = λk(1− r)H −rH ′ + λk′H 1−r +
d

dt

{
〈ut, u〉+ 〈ut, u〉Γ1

}
.

Our aim is to estimate the terms in the right hand side of (3.14). Taking φ = u in
the Distribution Identity (A), we obtain

d

dt

{
〈ut(t, ·),u(t, ·)〉+ 〈ut(t, ·), u(t, ·)〉Γ1

}
= ‖ut(t, ·)‖22 − 〈〈Au(t, ·), u(t, ·)〉〉+ 〈f(t, ·, u), u(t, ·)〉
− 〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1

+ ‖ut(t, ·)‖22,Γ1

≥ [1 + (q − ε0)/2](‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1
) + (q − ε0)A u(t)

− 〈〈Au(t, ·), u(t, ·)〉〉+ 〈f(t, ·, u(t, ·)), u(t, ·)〉 − (q − ε0)Fu(t)

− (q − ε0)Eu(t)− 〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1
,

where ε0 is any positive number taken as in (3.11). By (1.3), (2.5) and (3.11),

〈f(t, ·, u(t, ·)), u(t, ·)〉 − (q − ε0)Fu(t)

=

(
1− q − ε0

σ

)∫
Ω

g(t, x)|u(t, x)|σdx+
ε0
q

∫
Ω

c(x)|u(t, x)|qdx

≥ cε0
q

‖u(t, ·)‖qq.

Therefore, using also (2.11) and (3.13), and recalling that ε0 < q, we have for all
t ∈ I

(3.15)

d

dt

{
〈ut(t, ·), u(t, ·)〉+ 〈ut(t, ·), u(t, ·)〉Γ1

}
≥ ‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+ (cε0/q)‖u(t, ·)‖qq − (q − ε0)Eu(t)

− 〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1
+ (q − ε0 − γp)A u(t)

≥ ‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1
+ (cε0/q)‖u(t, ·)‖qq

+ (q − ε0 − γp)A u(t)− 〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1

+ γpH (t)− (q − ε0)[Eu(0)]+.

Since w1 > w0 by Lemma 2.3–(i),

(q − ε0 − γp)A u(t)− (q − ε0)[Eu(0)]+ ≥ (q − ε0 − γp)

(
1− q − ε0

q

)
A u(t)

+ (q − ε0 − γp)
q − ε0

q
w0 − (q − ε0)[Eu(0)]+

≥ (q − ε0 − γp)

(
1− q − ε0

q

)
A u(t),

being (q − ε0 − γp)
q − ε0

q
w0 − (q − ε0)[Eu(0)]+ ≥ 0 thanks to the choice of ε0 in

(3.11). Now, by (2.17) we have

(q − ε0 − γp)

(
1− q − ε0

q

)
A u(t) ≥ C2‖Du(t, ·)‖pp,
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with C2 = ε0(q−ε0−γp)
[
a+ b (c1/Cq)

p(γ−1)
]
/pq > 0. We stress that the positivity

of C2 is guaranteed by the fact that ε0 < q−γp in (3.11). Therefore, since γpH (t) ≥
0 for all t ∈ I, from (3.15) we obtain for all t ∈ I

(3.16)

d

dt

{
〈ut(t, ·),u(t, ·)〉+ 〈ut(t, ·), u(t, ·)〉Γ1

}
≥ ‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+ c2
(
‖u(t, ·)‖qq + ‖Du(t, ·

)
‖pp)

− 〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1
,

where c2 > 0 is defined in (3.11). Now, from (2.8) and (3.1) we find

〈Q(t, ·, u, ut), u〉Γ1
≤ {δ1(t)1/m‖u(t, ·)‖κ/m℘,Γ1

Du(t)1/m
′
+δ2(t)

1/℘Du(t)1/℘
′}‖u(t, ·)‖℘,Γ1

,

see [5, Lemma 4.2], and so, by (3.4)

(3.17)
〈Q(t, ·, u, ut), u〉Γ1

≤ S{δ1(t)1/m‖u(t, ·)‖κ/m℘,Γ1
Du(t)1/m

′

+ δ2(t)
1/℘Du(t)1/℘

′}‖u(t, ·)‖1−s
q ‖Du(t, ·)‖sp

.

Let
1

β1
=

1

m
− s

p

(
1 +

κ

m

)
,

1

β2
=

1

℘
− s

p
.

We claim that 1 < β1 ≤ β2. Indeed, β1 > 1 derives from the facts that s > 0,
m + κ > 0 and m > 1 by (2.8). On the other hand, the relation β1 ≤ β2 is
equivalent to sκ ≤ (℘−m)p/℘, which holds true being s < 1 and κ ≤ (℘−m)p/℘
by (2.8).

Hence, (3.17) and the fact that S ≥ 1 imply that for all t ∈ I

〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1

≤ S1+κ/m

{(
δ1(t)

1/(m−1)Du(t)
)1/m′

· ‖u(t, ·)‖(1−s)(1+κ/m)
q ‖Du(t, ·)‖s(1+κ/m)

p

+
(
δ2(t)

1/(℘−1)Du(t)
)1/℘′

‖u(t, ·)‖1−s
q ‖Du(t, ·)‖sp

}

= S1+κ/m

{(
δ1(t)

1/(m−1)Du(t)
)1/m′

‖u(t, ·)‖q/β1
q ‖Du(t, ·)‖s(1+κ/m)

p ‖u(t, ·)‖α1
q

+
(
δ2(t)

1/(℘−1)Du(t)
)1/℘′

‖u(t, ·)‖q/β2
q ‖Du(t, ·)‖sp‖u(t, ·)‖α2

q

}

≤ S1+κ/m
{
[(2δ1(t)/�)

1/(m−1)Du(t) + 1
2�‖u(t, ·)‖

q
q +

1
2�‖Du(t, ·)‖pp] · ‖u(t, ·)‖α1

q

+[(2δ2(t)/�)
1/(℘−1)Du(t) + 1

2�‖u(t, ·)‖
q
q +

1
2�‖Du(t, ·)‖pp] · ‖u(t, ·)‖α2

q

}
,

where in the last step we have applied Young’s inequality, with � ∈ (0, 1) given in
(3.11). Finally, by (2.16)1

〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1
≤ q1

{
�−m′/m[δ1(t)

1/(m−1) + δ2(t)
1/(℘−1)]Du(t)

+ �
(
‖u(t, ·)‖qq + ‖Du(t, ·)‖pp

)}
· ‖u(t, ·)‖α2

q ,
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where q1 = 21/(m−1)S1+κ/mmax{1, cα1−α2
1 } > 0 is exactly the number defined in

(3.8), being c1 ≤ 1. Now, (2.7), (2.10), (3.13) and Lemma 2.3–(iii) assure for all
t ∈ I that

(3.18) H (t) ≤ E0 − Eu(t) <

(
q

γp
− 1

)
w2 + Fu(t) ≤ q

γp
Fu(t) ≤ c∞

γp
‖u(t, ·)‖qq.

Moreover, by (3.9)

r = −α2/q ∈ (0, 1),

and so

‖u(t, ·)‖α2
q = ‖u(t, ·)‖−qr

q ≤ (c∞/q)r[Fu(t)]−r ≤ (c∞/γp)r[H (t)]−r.

Therefore,

〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1

≤ q1(c∞/γp)r
{
�−m′/m[δ1(t)

1/(m−1) + δ2(t)
1/(℘−1)]Du(t)

+ �
(
‖u(t, ·)‖qq + ‖Du(t, ·)‖pp

)}
[H (t)]−r

for all t ∈ I. Put

(3.19) r0 = min

{
1

2
− 1

q
, r

}
.

Note that θ0 in (3.7) can be expressed as θ0 = r0/(1 − r0) so that r ∈ (0, r0).
Consequently, since 0 < r < r0 ≤ r < 1 by (3.19) and H ≥ H0, we have

(3.20)

〈Q(t,·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1

≤ q1(c∞/γp)r
{
�H −r

0

(
‖u(t, ·)‖qq + ‖Du(t, ·)‖pp

)
+ �−m′/mH r−r

0 [δ1(t)
1/(m−1) + δ2(t)

1/(℘−1)] · [H (t)]−rDu(t)
}
.

Therefore, by (3.5), (3.16), (3.20) and the facts that λk′H 1−r ≥ 0 and H ′ = D ,
from (3.14) it follows that a.e. in I

Z ′ ≥ k
{
λ(1− r)− q1(c∞/γp)r�−m′/mH r−r

0

}
H −rH ′ + ‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+
{
c2 − q1(c∞/γp)r�H −r

0

}
(‖u(t, ·)‖qq + ‖Du(t, ·)‖pp).

Since λ(1− r)− q1(c∞/γp)r�−m′/mH r−r
0 ≥ 0, for a.a. t ∈ I

(3.21) Z ′(t) ≥ C
{
‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+ ‖u(t, ·)‖qq + ‖Du(t, ·)‖pp
}
,

where 2C = min{c2, 1} ≤ 1. On the other hand, putting α = 1/(1 − r) ∈ (1, 2),
from the definition of Z we obtain

Z (t) ≤ λk(t)H (t)1/α +
{
|〈ut(t, ·), u(t, ·)〉|+ |〈ut(t, ·), u(t, ·)〉Γ1

|
}

≤ λk(t)H (t)1/α +
{
‖ut(t, ·)‖2‖u(t, ·)‖2 + ‖ut(t, ·)‖2,Γ1

‖u(t, ·)‖2,Γ1

}
.

Denote by ν = 2/α so that ν > 1. By Young’s inequality

(3.22)
Z (t)α ≤ 4α−1 [max{λk(t), 1}]α

{
H (t) + ‖ut(t, ·)‖αν2 + ‖u(t, ·)‖αν′

2

+‖ut(t, ·)‖αν2,Γ1
+ ‖u(t, ·)‖αν′

2,Γ1

}
.
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In order to estimate the right hand side of (3.22), first note that Lq(Ω) ↪→ L2(Ω)
continuously being q > 2, and so, by (2.16)1, we get for all t ∈ I

(3.23)
‖u(t, ·)‖αν′

2 ≤ μn(Ω)
αν′(q−2)/2q‖u(t, ·)‖αν′

q

≤ cαν
′−q

1 μn(Ω)
αν′(q−2)/2q‖u(t, ·)‖qq.

Consider the relation

zξ ≤ z + 1 ≤ (1 + 1/η)(z + η),

which holds for all z ≥ 0, ξ ∈ [0, 1], η > 0. Take z = ‖u(t, ·)‖αν′

2,Γ1
, ξ = 2/αν′ and

η = H0, so that

‖u(t, ·)‖22,Γ1
≤ (1 + 1/H0)(H0 + ‖u(t, ·)‖αν′

2,Γ1
) ≤ (1 + 1/H0)(H (t) + ‖u(t, ·)‖αν′

2,Γ1
).

By Proposition 2.1, (3.2) and (3.3) we have

‖u(t, ·)‖2,Γ1
≤ μn(Ω)

(℘0−2)/2℘0‖u(t, ·)‖℘0,Γ1
≤ C‖u(t, ·)‖1−s

q ‖Du(t, ·)‖sp,

with C given in (3.8). Raising both sides of the last relation to the power αν′

and then using Young’s inequality with exponents σ1 = q/(1 − s)αν′ and σ2 =
q/[q − (1− s)αν′], we get

(3.24) ‖u(t, ·)‖αν′

2,Γ1
≤ C

αν′
(
‖u(t, ·)‖qq + ‖Du(t, ·)‖sαν′σ2

p

)
.

This is possible, since σ1 > 1 and σ2 > 1. Indeed, s ∈ (0, 1) and q > αν′ by (3.19),
being

1

αν′
=

ν − 1

αν
=

1

α
− 1

2
=

1

2
− r >

1

q
.

We claim that

(3.25) sαν′σ2 < p.

Relation (3.25) is equivalent to

(3.26) αν′ < pq/[s(q − p) + p].

Since αν = 2, the function αν′ = 2α/(2 − α) is strictly increasing in the variable
α. Now α = 1/(1− r) and r < r by (3.19), so that

αν′ <
2

1− 2r
=

2pq℘

pq(℘− 2) + 2s℘(q − p) + 2p℘
.

Hence, to prove (3.26) it is sufficient to show that

2℘

pq(℘− 2) + 2s℘(q − p) + 2p℘
≤ 1

s(q − p) + p
,

which clearly holds, being ℘ ≥ 2. Therefore, the claim (3.25) is true and from
(3.24) we get

‖u(t, ·)‖αν′

2,Γ1
≤ C

(
‖u(t, ·)‖qq + ‖Du(t, ·)‖pp

)
,

by (2.16), where C = Cαν′
max{1, (c1/Cq)

sαν′σ2−p} = Cαν′
(c1/Cq)

sαν′σ2−p ≥ 1 is
exactly the positive number given in (3.8). Consequently, by (3.18) and (3.23) it
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follows

Z (t)α ≤ 4α−1 [max{λk(t), 1}]α
{
‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+
(
c∞/γp+ C + cαν

′−q
1 μn(Ω)

αν′(q−2)/2q
)
‖u(t, ·)‖qq + C‖Du(t, ·)‖pp

}
≤ 4α−1 [max{λk(t), k(t)/k0}]α

{
‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+
(
c∞/γp+ C + cαν

′−q
1 μn(Ω)

αν′(q−2)/2q
)
‖u(t, ·)‖qq + C‖Du(t, ·)‖pp

}
,

being k(t) ≥ k0 > 0 for a.a. t ∈ I. Since λ ≥ 1/k0 by assumption, taking

B = 4α−1(c∞/γp+ C + cαν
′−q

1 μn(Ω)
αν′(q−2)/2q), we obtain

(3.27) Z (t)α ≤ B[λk(t)]α
{
‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

+ ‖u(t, ·)‖qq + ‖Du(t, ·)‖pp
}
.

Combining the last relation with (3.21), we have

Z (t)−αZ ′(t) ≥ C

B
[λk(t)]−α.

In conclusion, for a.a. t ∈ I

(3.28) Z (t)θ ≥ Bλ1+θ

Bλ1+θZ −θ
0 − θC

∫ t

0
k(τ )−(1+θ)dτ

= Φ(t),

where Z0 = Z (0). Therefore, Φ(t) ↗ ∞ as t ↗ T0, where T0 is defined in (3.12)
and the constant K given in (3.11) is obtained as K = B/C. Hence Z cannot be
continued after T0, that is u cannot be global and T ≤ T0, as required. �

Remark 3.2. (i) The request λ ≥ 2[〈u0, u1〉 + 〈u0, u1〉Γ1
]−/k0H

1/(1+θ)
0 in

(3.11) guarantees that Z0 > 0, in the more subtle case 〈u0, u1〉+ 〈u0, u1〉Γ1
< 0. In

the literature, when the initial data u0 and u1 are such that 〈u0, u1〉 ≥ 0, they are
called cooperative. In this context we generalize this notion, saying that u0 and u1

are cooperative up to the boundary if 〈u0, u1〉 ≥ 0 and 〈u0, u1〉Γ1
≥ 0. If u0 and u1

are cooperative up to the boundary then Z0 > 0, being λ > 0 by (3.11), and in this
case condition (3.11) on λ simply reduces to

λ = max

{
q1(c∞/γp)rH r−r

0

(1− r)�m′/m
,
1

k0

}
.

(ii) If either Eu(0) > 0 or Eu(0) ≤ 0 and σ > γp, then we can take

ε0 = min

{
q − σ, q − γp− q[Eu(0)]+

w0

}
∈ (0, q − γp)

in (3.11). In condition (6.4) of [4], a similar request on ε0, with 2 in place of p,
was made in order to obtain a priori estimates for polyharmonic Kirchhoff systems
under homogeneous Dirichlet boundary conditions. However, in [4] the possibility
ε0 = q − 2γ was allowed, while here we strongly need ε0 < q − γp, as stressed in
the proof of Theorem 3.1.

(iii) Theorem 3.1 does not guarantee finite time blow up of solutions. However,
global non–existence occurs by the blow up of natural norms, when either T = T0

or limt→T− Z (t) = ∞, as it will be shown in the corollary below.

Corollary 3.3. Under the assumptions of Theorem 3.1, if either limt→T−Z (t)
= ∞ or T = T0, then

(3.29) lim
t→T−

‖Du(t, ·)‖p = ∞.
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Proof. The proof of Theorem 3.1 can be repeated word by word. Hence, by
(3.28) we get limt→T− Z (t) = ∞ in both cases. Now, relations (2.10), (3.13) and
(B)–(ii) imply that for all t ∈ I

0<H0 ≤ H (t)≤[Eu(0)]+−Eu(t)≤ [Eu(0)]+− 1
2

(
‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1

)
+Fu(t).

Hence, by Lemma 2.3–(iii) and (2.7)

‖ut(t, ·)‖22 + ‖ut(t, ·)‖22,Γ1
< 2([Eu(0)]+ + Fu(t)) < 2(E0 + Fu(t))

≤ 2q

γp
Fu(t) ≤ 2c∞

γp
‖u(t, ·)‖qq.

Using also (2.2) and (2.16), we get

Z (t)α ≤ B[λk(t)]α
{
2Fu(t) + 2E0 + ‖u(t, ·)‖qq + ‖Du‖pp

}
≤ Λ‖Du(t, ·)‖qp,

where α and B are the positive constants introduced in the proof of Theorem 3.1,

and Λ = B[λk(T )]α

{(
2c∞
γp

+ 1

)
Cq
q +

(
Cq

c1

)q−p
}

> 0 is obtained by the mono-

tonicity of k, being T ≤ T0 < ∞. Therefore,

‖Du(t, ·)‖qp ≥ Λ−1Z (t)α,

and so limt→T− ‖Du(t, ·)‖p = ∞, as claimed. �

Of course there exists limt→T− Z (t) ≤ ∞ by (3.22) and (3.28). If limt→T− Z (t)
is infinite, a case which occurs when T = T0, then (3.29) is valid as shown in Corol-
lary 3.3. While, if limt→T− Z (t) = ZT < ∞, so that T < T0 by Corollary 3.3, it
could happen that lim supt→T− ‖Du(t, ·)‖p < ∞, as explained in Remark 3.2–(iii).
In this case, or even when lim inft→T− ‖Du(t, ·)‖p is finite, we get limt→T− H (t) <
∞. Otherwise, by the definition of H there exists limt→T− H (t) = ∞ and so
limt→T− ‖u(t, ·)‖q = ∞ by (3.18). This is clearly impossible by the Sobolev imbed-
ding, being q subcritical by (2.5). Therefore, the main dynamical part Du of the
damped system, the so called damping rate, is actually in L1(I), I = [0, T ), and
this means that the total damping over the entire time interval I is finite.

In the next Corollary 3.4, we give simpler expressions for T0, when the damping
Q is of special type. We assume all the structural hypothesis stated at the beginning
of the Section, except for the existence of the auxiliary function k satisfying (3.5)
and (3.6). The proof of Corollary 3.4 will consist essentially in finding such a
function. To this aim, we somehow follow the proof of Proposition 4.1 of [4],
writing all the steps for more clarity.

Corollary 3.4. Given K ≥ 1, 0 ≤ s ≤ m − 1 and δ1, δ2 defined in (3.1),
suppose that

δ1(t)
1/(m−1) + δ2(t)

1/(℘−1) ≤ K(1 + t)s/(m−1) for all t ∈ I.

If (3.10) holds then T ≤ T0 with

T0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K(λK)1+θ

θZ θ
0

= Θ0, if s = 0 or s = m− 1, 0 < θ ≤ θ0,

eΘ0 − 1, if 0 < s < m− 1, θ = (m− 1− s)/s,

(mΘ0 + 1)1/m − 1, if 0 < s < m− 1, θ < (m− 1− s)/s,
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where m = [m− 1− s(1 + θ)]/(m− 1) > 0 being θ < (m− 1− s)/s, and λ, K and
Z0 are the positive constants defined in (3.11).

Proof. First we need to find a function k ∈ W 1,1
loc (R

+
0 ), k > 0, k′ ≥ 0 and a

positive number θ satisfying (3.5) and (3.6). Define for all t ∈ R
+
0

k(t) =

{
K(1 + t)s/(m−1), if 0 ≤ s < m− 1,

K, if s = m− 1.

In both the cases k ∈ W 1,1
loc (R

+
0 ), k > 0, k′ ≥ 0 and (3.5) holds.

Moreover, if s = 0 or s = m − 1, then (3.6) holds taking any θ ∈ (0, θ0], with
θ0 as in (3.7), and the value θ = θ0 is optimal. While, if 0 < s < m− 1, then (3.6)
holds, provided that θ > 0 is so small that θ ≤ min{θ0, (m− 1− s)/s}.

To conclude the proof it is enough to apply Theorem 3.1, so that from (3.12)
we get the claim. �
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[13] Francis Conrad and Ömer Morgül, On the stabilization of a flexible beam with a
tip mass, SIAM J. Control Optim. 36 (1998), no. 6, 1962–1986 (electronic), DOI
10.1137/S0363012996302366. MR1638023 (99g:93072)
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