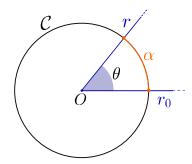
RICHIAMI di TRIGONOMETRIA

Francesca G. Alessio

Università Politecnica delle Marche

Sia C una circonferenza di raggio 1 e centro O. All'angolo θ individuato dalle due semirette r_0 e r uscenti da O corrisponderà un arco sulla circonferenza di lunghezza α . Diremo che l'angolo θ misura α radianti.



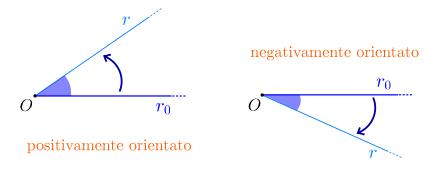
Dato che π è il rapporto tra la lunghezza di una circonferenza e il suo diametro, abbiamo che la circonferenza $\mathcal C$ ha lunghezza 2π . Quindi un angolo giro misurerà 2π radianti, un angolo piatto π radianti e un angolo retto $\frac{\pi}{2}$ radianti

$$\alpha \operatorname{rad}: \beta^{\mathrm{o}} = \pi \operatorname{rad}: 180^{\mathrm{o}}$$

▶ Un angolo di 45° misura $\frac{\pi}{4}$ radianti, essendo $45^{\circ} = \frac{180^{\circ}}{4}$, mentre un angolo di $\frac{\pi}{9}$ radianti misura 20° dato che $20^{\circ} = \frac{180^{\circ}}{9}$.

ANGOLI ORIENTATI

Fissata come semiretta di riferimento la semiretta r_0 , si dice che l'angolo di lati le semirette r_0 e r e vertice O è **positivamente orientato** (rispettivamente, **negativamente orientato**) se per sovrapporsi alla semiretta r coprendo l'angolo assegnato, la semiretta r_0 deve ruotare in senso antiorario (rispettivamente, in senso orario).

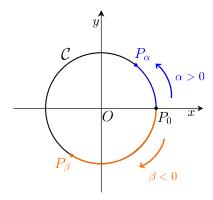


La misura di un angolo orientato verrà indicata con segno positivo se l'angolo risulta positivamente orientato, negativo se l'angolo è negativamente orientato.

Nel piano cartesiano Oxy, considerata la circonferenza trigonometrica C di centro l'origine O e raggio 1, indichiamo con P_0 il punto di coordinate $(1,0) \in C$.

Dato $\alpha \in \mathbb{R}$, sia P_{α} il punto della circonferenza \mathcal{C} tale che l'arco $\widehat{P_0P_{\alpha}}$ abbia lunghezza $|\alpha|$, dove si conviene che

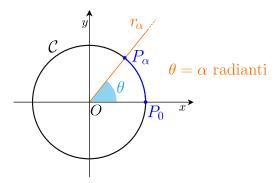
• partendo dal punto P_0 , l'arco $\widehat{P_0P_\alpha}$ viene percorso in senso antiorario se $\alpha > 0$ e in senso orario se $\alpha < 0$



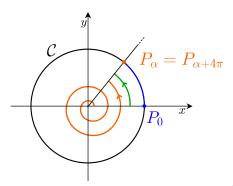
• se $|\alpha| > 2\pi$ il punto P_{α} viene individuato percorrendo k volte l'intera circonferenza trigonometrica e quindi un arco di lunghezza β dove $k \in \mathbb{N}$ e $\beta \in [0, 2\pi)$ sono tali che $|\alpha| = \beta + 2k\pi$.

Osserviamo che

• la semiretta r_{α} uscente dall'origine e passante per P_{α} individua con il semiasse delle ascisse positive un **angolo orientato** che misura α radianti.

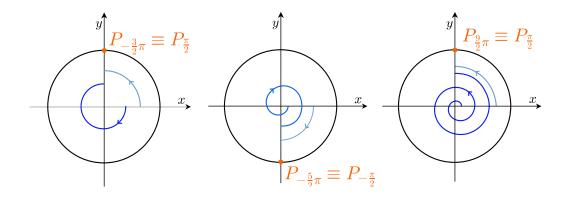


• dato che la circonferenza \mathcal{C} misura 2π , risulta $P_{\alpha+2k\pi} = P_{\alpha}$ per ogni $k \in \mathbb{Z}, \alpha \in \mathbb{R}$



Ad esempio

- $P_{-\frac{3}{2}\pi} = P_{\frac{\pi}{2}} = (0,1)$ poiché $-\frac{3}{2}\pi = \frac{\pi}{2} 2\pi$,
- $P_{-\frac{5}{2}\pi} = P_{-\frac{\pi}{2}} = (0, -1) \text{ dato che } -\frac{5}{2}\pi = -\frac{\pi}{2} 2\pi,$
- $P_{\frac{9}{2}\pi} = P_{\frac{\pi}{2}} = (0,1)$ essendo $\frac{9}{2}\pi = \frac{\pi}{2} + 4\pi$.



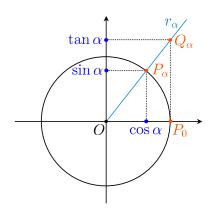
Si dicono **coseno** e **seno** di $\alpha \in \mathbb{R}$, $\cos \alpha$ e $\sin \alpha$, rispettivamente l'ascissa e l'ordinata del corrispondente punto P_{α} sulla circonferenza trigonometrica:

$$P_{\alpha} = (\cos \alpha, \sin \alpha)$$

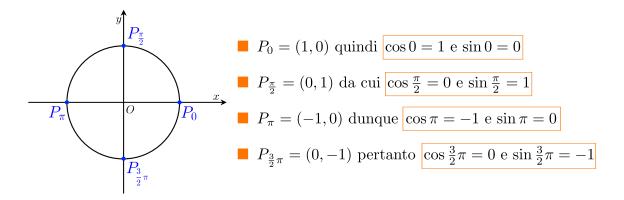
Per $\alpha \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, si dice **tangente** di α , $\tan \alpha$, il rapporto

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

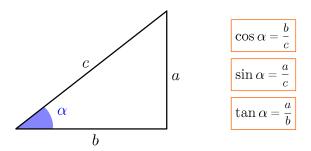
NOTA: $\tan \alpha$ è il coefficiente angolare della semiretta r_{α} e risulta uguale all'ordinata del punto Q_{α} di intersezione di r_{α} con la retta x=1



Dalla definizione segue immediatamente che



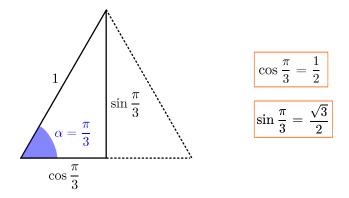
Dato un triangolo rettangolo di cateti a e b e ipotenusa c, indicata con α la misura in radianti dell'angolo opposto al cateto a risulta



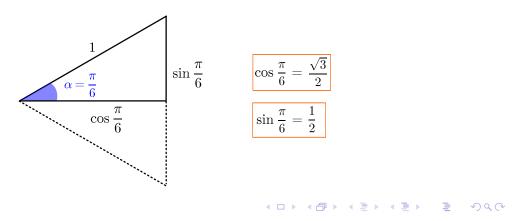
Ne deduciamo in particolare che, essendo cos $\frac{\pi}{4}$ e sin $\frac{\pi}{4}$ i cateti di un triangolo rettangolo isoscele di ipotenusa 1, si ha



Dato che un triangolo rettangolo di ipotenusa 1 con un angolo acuto di $\frac{\pi}{3}$ radianti è la metà di un triangolo equilatero, dal teorema di Pitagora si ha

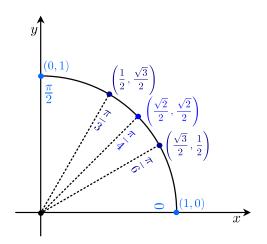


Allo stesso modo, poiché $\frac{\pi}{6}$ è la metà di $\frac{\pi}{3}$ abbiamo



Riunendo quanto trovato, otteniamo la seguente tabella che riporta i valori di coseno, seno e tangente degli **angoli fondamentali**

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∄



Ricordando che l'equazione della circonferenza trigonometrica \mathcal{C} è $x^2+y^2=1$, dalla definizione, essendo $P_\alpha\in\mathcal{C}$, per ogni $\alpha\in\mathbb{R}$ abbiamo

- Identità Pitagorica: $\cos^2 \alpha + \sin^2 \alpha = 1$
- $-1 \le \cos \alpha \le 1 \quad \text{e} \quad -1 \le \sin \alpha \le 1$
- $\cos(\alpha + 2k\pi) = \cos \alpha \ e \ \sin(\alpha + 2k\pi) = \sin \alpha \ \text{per ogni} \ k \in \mathbb{Z}$
- $\cos(-\alpha) = \cos \alpha \text{ e } \sin(-\alpha) = -\sin \alpha$
- Identità degli angoli supplementari: $\cos(\pi \alpha) = -\cos \alpha \ \ \text{e} \ \sin(\pi \alpha) = \sin \alpha$
- Identità degli angoli complementari: $\cos(\frac{\pi}{2} \alpha) = \sin \alpha \ \text{e} \ \sin(\frac{\pi}{2} \alpha) = \cos \alpha$

Infine, per ogni $\alpha, \beta \in \mathbb{R}$ valgono le seguenti formule

■ Formule di addizione

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

■ Formule di sottrazione

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

Ponendo $\alpha = \beta$ nelle formule di addizione otteniamo

■ Formule di duplicazione

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin(2\alpha) = 2\sin\alpha\cos\alpha$$

Dalle formule di duplicazione, grazie all'identità pitagorica, per ogni $\beta \in \mathbb{R}$ si ha

$$\cos(2\beta) = 1 - 2\sin^2\beta = 2\cos^2\beta - 1$$

da cui seguono

Formule di bisezione

$$\cos^2\frac{\alpha}{2} = \frac{1 + \cos\alpha}{2}$$

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} \qquad \sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \qquad \tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

Formule di razionalizzazione: se $t = \tan \frac{\alpha}{2}$ allora

$$\cos \alpha = \frac{1 - t^2}{1 + t^2} \qquad \sin \alpha = \frac{2t}{1 + t^2} \qquad \tan \alpha = \frac{2t}{1 - t^2}$$

$$\sin \alpha = \frac{2t}{1 + t^2}$$

$$\tan \alpha = \frac{2t}{1 - t^2}$$

FUNZIONI TRIGONOMETRICHE

Considerate le corrispondenti funzioni coseno, seno e tangente abbiamo

- **DOMINIO:** Dom($\cos x$) = Dom($\sin x$) = \mathbb{R} mentre $Dom(\tan x) = \{ x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \};$
- **IMMAGINE**: $\operatorname{Im}(\cos x) = \operatorname{Im}(\sin x) = [-1, 1] \operatorname{e} \operatorname{Im}(\tan x) = \mathbb{R};$
- **SIMMETRIE**: $\cos x$ è funzione pari, $\sin x$ e $\tan x$ sono funzioni dispari;
- **PERIODICITÀ**: $\cos x$ e $\sin x$ sono funzioni periodiche di periodo 2π , $\tan x$ è una funzione periodica di periodo π .

Riguardo alle proprietà di MONOTONIA delle funzioni trigonometriche, limitandoci a considerare un intervallo fondamentale avente come ampiezza il periodo, abbiamo

- $\cos x$ è strettamente decrescente in $[0,\pi]$, crescente in $[\pi,2\pi]$;
- $\sin x$ è strettamente crescente in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, decrescente in $\left[\frac{\pi}{2}, \frac{3}{2}\pi\right]$;
- $\tan x$ è strettamente crescente in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Grafico della funzione coseno

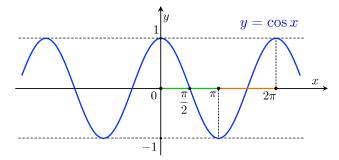
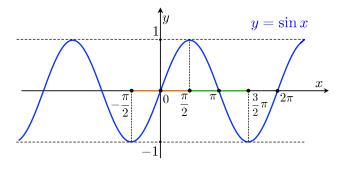


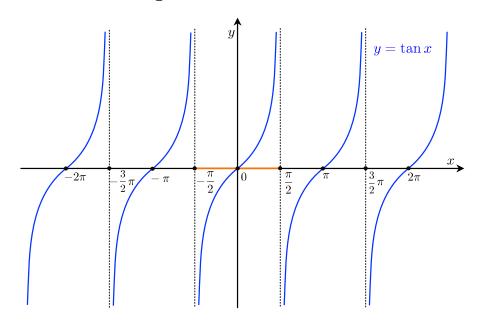
Grafico della funzione seno



NOTA: Dall'identità degli angoli complementari,

 $\sin x = \cos(\frac{\pi}{2} - x) = \cos(x - \frac{\pi}{2})$ per ogni $x \in \mathbb{R}$: il grafico del seno si ottiene dal grafico del coseno operando una traslazione di vettore $\vec{v} = (\frac{\pi}{2}, 0)$.

Grafico della funzione tangente



FUNZIONI TRIGONOMETRICHE INVERSE

Le funzioni arcocoseno, $\arccos x$, arcoseno, $\arcsin x$, e arcotangente, $\arctan x$, sono definite rispettivamente come le inverse delle funzioni $\cos x$ ristretta all'intervallo $[0,\pi]$, sin x ristretta a $[-\frac{\pi}{2},\frac{\pi}{2}]$ e tan x ristretta a $(-\frac{\pi}{2},\frac{\pi}{2}).$

Osservato che $\cos([0,\pi]) = \sin([-\frac{\pi}{2},\frac{\pi}{2}]) = [-1,1] e \tan((-\frac{\pi}{2},\frac{\pi}{2})) = \mathbb{R}$, si ha

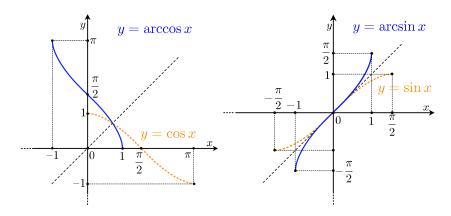
Ad esempio

- Abbiamo che $\arccos \frac{1}{2} = \frac{\pi}{3}$ dato che $\frac{\pi}{3} \in [0, \pi]$ e $\cos \frac{\pi}{3} = \frac{1}{2}$.
- Si ha $\left| \arcsin \frac{1}{2} = \frac{\pi}{6} \right|$ essendo $\sin \frac{\pi}{6} = \frac{1}{2} e \frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}].$
- Risulta $\arctan(-1) = -\frac{\pi}{4}$ dato che $-\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$ e $\tan(-\frac{\pi}{4}) = -1$.

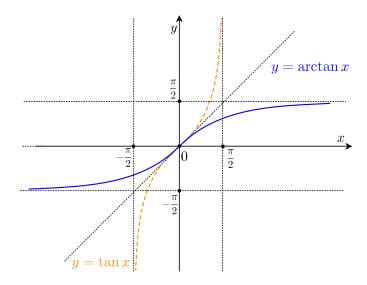
Abbiamo

- $Dom(arccos) = cos([0, \pi]) = [-1, 1]$ e $Im(arccos) = [0, \pi]$;
- $Dom(arcsin) = sin([-\frac{\pi}{2}, \frac{\pi}{2}]) = [-1, 1]$ e $Im(arcsin) = [-\frac{\pi}{2}, \frac{\pi}{2}];$
- $Dom(\arctan) = \tan((-\frac{\pi}{2}, \frac{\pi}{2})) = \mathbb{R} \text{ e } Im(\arctan) = (-\frac{\pi}{2}, \frac{\pi}{2}).$

Il grafico delle funzioni $\arccos x$ e $\arcsin x$ risulta rispettivamente il simmetrico rispetto alla bisettrice y = x delle funzioni $\cos x$, ristretta a $[0,\pi]$, e sin x, ristretta a $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$



NOTA: la funzione $\arcsin x$ è dispari e, dall'identità degli angoli complementari, si ha $| \arccos x + \arcsin x = \frac{\pi}{2} | \text{ per ogni } x \in [-1, 1].$ Il grafico della funzione arcontangente risulta invece il simmetrico alla bisettrice y=x del grafico della funzione tan x ristretta a $\left(\frac{\pi}{2},\frac{\pi}{2}\right)$



NOTA: la funzione arctan x è dispari, strettamente crescente e assume valori strettamente compresi tra $-\frac{\pi}{2}$ e $\frac{\pi}{2}$.

EQUAZIONI e DISEQUAZIONI TRIGONOMETRICHE

Parliamo di **equazioni e disequazioni trigonometriche** quando nell'equazioni e disequazioni compaiono funzioni trigonometriche.

Per risolvere tali equazioni e disequazioni occorre tener presente che le funzioni seno e coseno sono **periodiche di periodo 2\pi**, mentre la funzione tangente è **periodica di periodo** π .

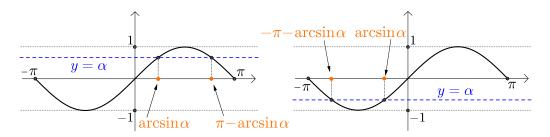
Per tale motivo, per risolvere un'equazione o disequazione trigonometrica converrà iniziare col **restringere** lo studio in un intervallo di ampiezza il periodo (in generale 2π , oppure π se è coinvolta solo la funzione tangente).

Una volta determinate le eventuali soluzioni in tale intervallo, si otterrà la soluzione in tutto \mathbb{R} aggiungendo, per periodicità, **multipli interi del periodo**.

Vedremo innanzitutto equazioni e disequazioni *elementari*, per risolverle ragioneremo per **via grafica**, tracciando il grafico delle funzioni coinvolte in un intervallo di ampiezza il periodo.

$\sin x = \alpha \text{ con } \alpha \in \mathbb{R}$

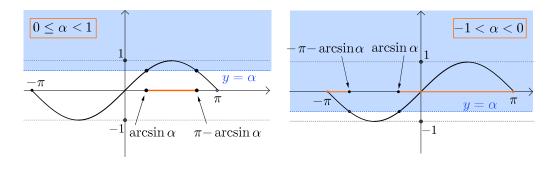
Osserviamo che l'equazione non ha soluzioni se $|\alpha| > 1$. Per $|\alpha| \le 1$ ogni retta $y = \alpha$ interseca il grafico del seno nell'intervallo $[-\pi, \pi]$ in due punti di ascissa arcsin α il primo e $\pm \pi$ – arcsin α il secondo.



- L'equazione $\sin x = \frac{\sqrt{2}}{2}$ nell'intervallo $[-\pi, \pi]$ è verificata da $\frac{\pi}{4}$ e $\pi \frac{\pi}{4} = \frac{3}{4}\pi$. Per periodicità tutte le soluzioni reali sono date da $x = -\frac{\pi}{4} + 2k\pi$ e $x = -\frac{3}{4}\pi + 2k\pi$, $k \in \mathbb{Z}$.

$\sin x > \alpha \text{ con } \alpha \in \mathbb{R}$

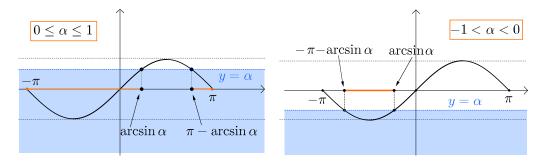
Possiamo tracciare il grafico della funzione seno in $[-\pi, \pi]$ e osservare in quali intervalli questo si trova al di sopra della retta $y = \alpha$.



- La disequazione $|\sin x > 2|$ non ammette soluzioni mentre $|\sin x > -\pi|$ è verificata da ogni $x \in \mathbb{R}$.
- La disequazione $\sin x > \frac{1}{2}$ nell'intervallo $[-\pi, \pi]$ è verificata da $\frac{\pi}{6} < x < \pi \frac{\pi}{6} = \frac{5}{6}\pi$. Per periodicità tutte le soluzioni reali sono date da $\frac{\pi}{6} + 2k\pi < x < \frac{5}{6}\pi + 2k\pi$, $k \in \mathbb{Z}$.

$\sin x < \alpha \text{ con } \alpha \in \mathbb{R}$

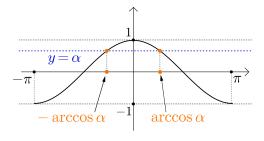
Tracciamo il grafico della funzione seno in $[-\pi, \pi]$ e osserviamo in quali intervalli questo si trova al di sotto della retta $y = \alpha$.



- La disequazione $\sin x < \frac{\pi}{2}$ è verificata da ogni $x \in \mathbb{R}$.
- La disequazione $\sin x < \frac{\sqrt{3}}{2}$ nell'intervallo $[-\pi,\pi]$ è verificata da $-\pi < x < \frac{\pi}{3}$ e $\pi \frac{\pi}{3} = \frac{2}{3}\pi < x < \pi$. Per periodicità tutte le soluzioni reali sono date da $-\pi + 2k\pi < x < \frac{\pi}{3} + 2k\pi$ e $\frac{2}{3}\pi + 2k\pi < x < \pi + 2k\pi$, $k \in \mathbb{Z}$.

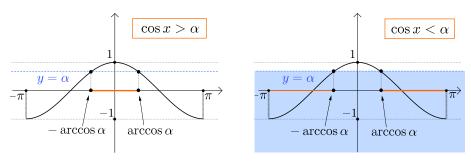
$\cos x = \alpha \text{ con } \alpha \in \mathbb{R}$

L'equazione non ha soluzioni se $|\alpha| > 1$ mentre per $|\alpha| \le 1$ ogni retta $y = \alpha$ interseca il grafico del coseno in due punti di ascissa arccos α e - arccos α

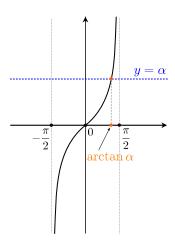


$$\cos x > \alpha$$
 oppure $\cos x < \alpha$ con $\alpha \in \mathbb{R}$

Anche in questo caso, possiamo tracciare il grafico della funzione coseno in $[-\pi,\pi]$ e la retta $y=\alpha$ e ragionare graficamente



In questo caso possiamo restringere lo studio all'intervallo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ dove la funzione tangente risulta strettamente crescente (e quindi iniettiva)



- L'equazione $\tan x = 1$ nell'intervallo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ è verificata da $x = \frac{\pi}{4}$, le soluzioni reali saranno quindi $x = \frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$.
- La disequazione $\tan x > -2$ nell'intervallo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ è verificata da $\arctan(-2) = -\arctan 2 < x < \frac{\pi}{2}$, le soluzioni reali saranno quindi date da $k\pi \arctan 2 < x < \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Vediamo infine alcune equazioni e disequazioni più complesse per le quali occorrerà riportarsi ai casi elementari visti.

- L'equazione $\cos(2x) \sin x = 0$, ricordando che $\cos(2x) = 1 \sin^2 x$, risulta equivalente a $\sin^2 x + \sin x 1 = 0$, equazione algebrica nella variabile $t = \sin x$. Ammette come soluzioni ogni $x = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$.
- L'equazione $\sin x + \cos x = 1$ può essere ricondotta all'equazione razionale $\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = 1$ ponendo $t = \tan \frac{x}{2}$, per $x \neq k\pi$ con $k \in \mathbb{Z}$. Ammette come soluzioni ogni $x = 2k\pi$ e $x = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$. In alternativa, posto $y = \cos x$ e $z = \sin x$, dall'identità pitagorica

In alternativa, posto $y = \cos x$ e $z = \sin x$, dall'identità pitagorica l'equazione risulta equivalente al sistema

$$\begin{cases} y + z = 1 \\ y^2 + z^2 = 1 \end{cases}$$

che ammette come soluzioni (1,0) e (0,1). Quindi le soluzioni dell'equazione iniziale saranno date dalle soluzioni dei sistemi

$$\begin{cases} \cos x = 1 \\ \sin x = 0 \end{cases} e \begin{cases} \cos x = 0 \\ \sin x = 1 \end{cases}$$

- La disequazione $\sqrt{1-\cos x} \le |\sin x|$ nell'intervallo $[0,2\pi]$ ammette come soluzioni ogni $-\frac{\pi}{2} + 2k\pi \le x \le \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$.
- La disequazione $\log(\sin x) + \log(\cos x) + 2\log 2 > 0$ dalle proprietà del logaritmo, risulta equivalente a $\log(4\sin x\cos x) > 0$ per $\sin x > 0$ e $\cos x > 0$, ammette come soluzioni ogni $\frac{\pi}{12} + 2k\pi < x < \frac{5\pi}{12} + 2k\pi$, $k \in \mathbb{Z}$.

