Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 9 gennaio 2012 – \fbox{A}

- (1) Fornire la definizione di funzione integrabile secondo Riemann e di integrale di Riemann.
- (2) Enunciare e dimostrare il Teorema di Rolle.
- (3) Dimostrare che se $(a_n)_{n\in\mathbb{N}}$ ha ordine di infinito minore di $(b_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ ha ordine di infinito minore di $(c_n)_{n\in\mathbb{N}}$ allora $(a_n)_{n\in\mathbb{N}}$ ha ordine di infinito minore di $(c_n)_{n\in\mathbb{N}}$.
- (4) Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi convergente e sia $(b_n)_{n\in\mathbb{N}}$ successione divergente a $+\infty$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.
 - A. La serie $\sum_{n=1}^{+\infty} \frac{a_n}{b_n}$ è convergente.

Vero

B. La serie $\sum_{n=1}^{+\infty} a_n b_n$ è convergente.

Falso

C. La serie di potenze $\sum_{n=1}^{+\infty} a_n x^n$ ha raggio di convergenza $\rho \geq 1$. Vero

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 9 gennaio 2012 – \fbox{B}

- (1) Fornire la definizione di funzione convessa ed enunciare i noti criteri di convessità.
- (2) Enunciare e dimostrare il Criterio di integrabilità.
- (3) Dimostrare che se $(a_n)_{n\in\mathbb{N}}$ è asintotica a $(b_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ è asintotica a $(c_n)_{n\in\mathbb{N}}$ allora $(a_n)_{n\in\mathbb{N}}$ è asintotica a $(c_n)_{n\in\mathbb{N}}$.
- (4) (4) Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi divergente e sia $(b_n)_{n\in\mathbb{N}}$ successione divergente a $+\infty$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.
 - A. La serie $\sum_{n=1}^{+\infty} \frac{a_n}{b_n}$ è divergente.
 - B. La serie $\sum_{n=1}^{+\infty} a_n b_n$ è divergente.
 - C. La serie di potenze $\sum_{n=1}^{+\infty} a_n x^n$ ha raggio di convergenza $\rho \leq 1$. Vero

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 28 febbraio 2012 – \fbox{A}

- (1) Fornire la definizione di serie numerica convergente e divergente. Enunciare il criterio del confronto e del confronto asintotico per serie a termini non negativi.
- (2) Enunciare e dimostrare il Teorema fondamentale del calcolo integrale.
- (3) Enunciare e provare la regola di derivazione del prodotto di due funzioni.
- (4) Sia f(x) funzione continua in $[a, +\infty)$ tale che $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.
 - A. f(x) è limitata in $[a, +\infty)$.
 - B. f(x) ammette massimo in $[a, +\infty)$.
 - C. $\int_{a}^{+\infty} f(x) dx$ è convergente.

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 28 febbraio 2012 – \fbox{B}

- (1) Fornire la definizione di raggio di convergenza di una serie di potenze, enunciare il Teorema di Abel (di convergenza in intervalli) ed il Teorema sul raggio di convergenza.
- (2) Enunciare e dimostrare il Teorema della media integrale.
- (3) Enunciare e provare la regola di derivazione della funzione inversa.
- (4) Sia f(x) funzione continua in $[a, +\infty)$ tale che $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.
 - A. f(x) è limitata in $[a, +\infty)$.

Vero

B. f(x) ammette minimo in $[a, +\infty)$.

Falso

C. $\int_{a}^{+\infty} f(x) dx$ è divergente.

Falso

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 24 marzo 2012

- (1) Fornire la definizione primitiva e di integrale indefinito. Enunciare la Formula fondamentale del calcolo integrale.
- (2) Enunciare e dimostrare il Teorema di regolarità delle successioni monotone.
- (3) Enunciare e provare che se $\lim_{n\to+\infty} a_n = a$ e $\lim_{n\to+\infty} b_n = b$ allora $\lim_{n\to+\infty} a_n + b_n = a + b$.
- (4) Sia f(x) funzione continua in [a,b] e derivabile in (a,b). Provare di ciascuna delle seguenti affermazioni se è vera o falsa.
 - A. f(x) è limitata in [a, b].

Vero

B. f'(x) è limitata in (a, b).

Falso

C. Esiste $x_0 \in (a, b)$ tale che $f'(x_0) = 0$.

Falso

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 11 giugno 2012

- (1) Fornire la definizione di funzione convessa e l'interpretazione geometrica. Enunciare i criteri di convessità. Provare che $f(x) = x^4$ è funzione convessa nel suo dominio.
- (2) Enunciare e dimostrare il Criterio del rapporto per successioni a termini positivi.
- (3) Provare che $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ converge se e solo se p > 1.
- (4) Sia $\sum_{n=0}^{+\infty} a_n x^n$ serie di potenze di raggio di convergenza $\rho = 1$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.

A.
$$\sum_{n=0}^{+\infty} na_n x^{n-1}$$
 converge per ogni $|x| < 1$.

B.
$$\sum_{n=0}^{+\infty} a_n 2^n$$
 non converge. Vero

C.
$$\sum_{n=0}^{+\infty} a_n$$
 converge.

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 3 luglio 2012

- (1) Fornire la definizione di integrale improprio per funzioni continue in (a, b]. Enunciare il criterio del confronto e del confronto asintotico per tale integrale e provare che $\int_0^1 \frac{1}{x^p} dx$ converge se e solo se p < 1.
- (2) Enunciare e dimostrare il Criterio di Leibniz per serie a termini di segno alterno.
- (3) Provare che ogni insieme $A \subset \mathbb{R}$ non vuoto e superiormente limitato ammette estremo superiore finito.
- (4) Sia f(x) funzione derivabile in (a,b) con $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x) = \ell \in \mathbb{R}$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.

A. f(x) è limitata in (a, b).

Vero

B. Esiste $x_0 \in (a, b)$ tale che $f(x_0) = \ell$.

Falso

C. Esiste $x_0 \in (a, b)$ tale che $f'(x_0) = 0$.

Vero

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 3 settembre 2012

- (1) Fornire la definizione di funzione integrabile secondo Riemann.
- (2) Enunciare e dimostrare il Criterio di convessità per funzioni derivabili.
- (3) Provare che se una successione ammette limite questo è unico.
- (4) Sia $\sum_{n=0}^{+\infty} a_n x^n$ serie di potenze di raggio di convergenza $\rho = +\infty$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa.

A.
$$\sum_{n=0}^{+\infty} a_n e^n$$
 converge. Vero

B.
$$\lim_{n \to +\infty} a_n b^n = 0$$
 per ogni $b > 0$. Vero

C.
$$\sum_{n=0}^{+\infty} a_n n!$$
 converge. Falso

Corso di Laurea in Ingegneria Civile ed Ambientale Prima prova scritta di Analisi Matematica 1 del 13 ottobre 2012

- (1) Fornire la definizione di serie convergente ed enunciare il criterio del confronto e del confronto asintotico per serie a termini non negativi.
- (2) Enunciare e dimostrare il Teorema di Rolle.
- (3) Provare che ogni insieme $A \subset \mathbb{R}$ non vuoto e superiormente limitato ammette estremo superiore finito.
- (4) Sia f(x) funzione continua e positiva in $[0, +\infty)$. Provare di ciascuna delle seguenti affermazioni se è vera o falsa:

A.
$$\int_0^{+\infty} f(x) dx \in \mathbb{R} \cup \{+\infty\}.$$
 Vero

B. se
$$\lim_{x \to +\infty} f(x) = 0$$
 allora $\int_0^{+\infty} f(x) dx$ converge.

C. se
$$\lim_{x \to +\infty} f(x) = \ell \neq 0$$
 allora $\int_0^{+\infty} f(x) dx$ diverge. Vero